| 1 | \section[Ionization]{Ionization} \label{sec:em.eion}
|
|---|
| 2 |
|
|---|
| 3 | \subsection{Method}
|
|---|
| 4 |
|
|---|
| 5 | The $G4eIonisation$ class provides the continuous and discrete
|
|---|
| 6 | energy losses of electrons and positrons due to ionization in a material
|
|---|
| 7 | according to the approach described in Section \ref{en_loss}.
|
|---|
| 8 | The value of the maximum energy transferable to a free electron $T_{max}$
|
|---|
| 9 | is given by the following relation:
|
|---|
| 10 | \begin{equation}
|
|---|
| 11 | \label{eion.c}
|
|---|
| 12 | T_{max} = \left\{ \begin{array}{ll}
|
|---|
| 13 | E-mc^2 & {for \hspace{.2cm} e^+} \\
|
|---|
| 14 | (E-mc^2)/2 & {for \hspace{.2cm} e^- } \\
|
|---|
| 15 | \end{array} \right .
|
|---|
| 16 | \end{equation}
|
|---|
| 17 | where $mc^2$ is the electron mass.
|
|---|
| 18 | Above a given threshold energy the energy loss is simulated by the
|
|---|
| 19 | explicit production of delta rays by M\"{o}ller scattering ($e^- e^-$), or
|
|---|
| 20 | Bhabha scattering ($e^+ e^-$). Below the threshold the soft electrons
|
|---|
| 21 | ejected are simulated as continuous energy loss by the incident
|
|---|
| 22 | ${e^{\pm}}$.
|
|---|
| 23 |
|
|---|
| 24 | \subsection{Continuous Energy Loss} \label{seceloss}
|
|---|
| 25 |
|
|---|
| 26 | The integration of \ref{comion.a} leads to the Berger-Seltzer
|
|---|
| 27 | formula \cite{eion.messel}:
|
|---|
| 28 | \begin{equation}
|
|---|
| 29 | \label{eion.d e}
|
|---|
| 30 | \left. \frac{dE}{dx} \right]_{T < T_{cut}} =
|
|---|
| 31 | 2 \pi r_e^2 mc^2 n_{el} \frac{1}{\beta^2}
|
|---|
| 32 | \left [\ln \frac{2(\gamma + 1)} {(I/mc^2)^2}+ F^{\pm} (\tau , \tau_{up})
|
|---|
| 33 | - \delta \right ]
|
|---|
| 34 | \end{equation}
|
|---|
| 35 | with
|
|---|
| 36 | \[
|
|---|
| 37 | \begin{array}{ll}
|
|---|
| 38 | r_e & \mbox{classical electron radius:}
|
|---|
| 39 | \quad e^2/(4 \pi \epsilon_0 mc^2 ) \\
|
|---|
| 40 | mc^2 & \mbox{mass energy of the electron} \\
|
|---|
| 41 | n_{el} & \mbox{electron density in the material} \\
|
|---|
| 42 | I & \mbox{mean excitation energy in the material}\\
|
|---|
| 43 | \gamma & \mbox{$E/mc^2$} \\
|
|---|
| 44 | \beta^2 & 1-(1/\gamma^2) \\
|
|---|
| 45 | \tau & \gamma-1 \\
|
|---|
| 46 | T_{cut} & \mbox{minimum energy cut for $\delta$ -ray production} \\
|
|---|
| 47 | \tau_c & \mbox{$T_{cut}/mc^2$} \\
|
|---|
| 48 | \tau_{max} & \mbox{maximum energy transfer:
|
|---|
| 49 | $\tau$ for $e^+$, $\tau/2$ for $e^-$} \\
|
|---|
| 50 | \tau_{up} & \min(\tau_c,\tau_{max}) \\
|
|---|
| 51 | \delta & \mbox{density effect function} .
|
|---|
| 52 | \end{array}
|
|---|
| 53 | \]
|
|---|
| 54 | In an elemental material the electron density is
|
|---|
| 55 | $$ n_{el} = Z \: n_{at} = Z \: \frac{\mathcal{N}_{av} \rho}{A} . $$
|
|---|
| 56 | $\mathcal{N}_{av}$ is Avogadro's number, $\rho$ is the material density,
|
|---|
| 57 | and $A$ is the mass of a mole. In a compound material
|
|---|
| 58 | $$
|
|---|
| 59 | n_{el} = \sum_i Z_i \: n_{ati}
|
|---|
| 60 | = \sum_i Z_i \: \frac{\mathcal{N}_{av} w_i \rho}{A_i} ,
|
|---|
| 61 | $$
|
|---|
| 62 | where $w_i$ is the proportion by mass of the $i^{th}$ element, with molar
|
|---|
| 63 | mass $A_i$ .
|
|---|
| 64 | \par
|
|---|
| 65 | \noindent
|
|---|
| 66 | The mean excitation energies $I$ for all elements are taken from
|
|---|
| 67 | \cite{ioni.icru1}.
|
|---|
| 68 | \par
|
|---|
| 69 | \noindent
|
|---|
| 70 | The functions $ F^{\pm}$ are given by :
|
|---|
| 71 | \begin{eqnarray}
|
|---|
| 72 | F^+ (\tau,\tau_{up}) & = &\ln(\tau\tau_{up} ) \\
|
|---|
| 73 | & & -\frac{\tau_{up}^2}{\tau}\left[\tau + 2 \tau_{up} -
|
|---|
| 74 | \frac{3\tau_{up}^2 y } {2} -\left(\tau_{up} - \frac{\tau_{up}^3 }{3} \right) y^2
|
|---|
| 75 | - \left (\frac{\tau_{up}^2}{2} - \tau
|
|---|
| 76 | \frac{\tau_{up}^3}{3} + \frac{\tau_{up}^4 } {4} \right)
|
|---|
| 77 | y^3 \right] \nonumber
|
|---|
| 78 | \end{eqnarray}
|
|---|
| 79 |
|
|---|
| 80 | \begin{eqnarray}
|
|---|
| 81 | F^- (\tau,\tau_{up} ) & = & -1 -\beta^2 \\
|
|---|
| 82 | & & +\ln \left [(\tau - \tau_{up})
|
|---|
| 83 | \tau_{up} \right ] + \frac{\tau}{\tau -\tau_{up}}
|
|---|
| 84 | + \frac{1}{\gamma^2} \left [
|
|---|
| 85 | \frac{\tau_{up}^2}{2} + ( 2\tau +1) \ln
|
|---|
| 86 | \left (1- \frac{\tau_{up}}{\tau} \right ) \right ] \nonumber
|
|---|
| 87 | \end{eqnarray}
|
|---|
| 88 | where $y = 1/(\gamma+1)$.
|
|---|
| 89 |
|
|---|
| 90 |
|
|---|
| 91 | The density effect correction is calculated according to the formalism of
|
|---|
| 92 | Sternheimer \cite{eion.sternheimer}:
|
|---|
| 93 | \input{electromagnetic/utils/densityeffect}
|
|---|
| 94 |
|
|---|
| 95 | \subsection{Total Cross Section per Atom and Mean Free Path } \label{sectot}
|
|---|
| 96 |
|
|---|
| 97 | The total cross section per atom for M\"{o}ller scattering ($e^- e^-$) and
|
|---|
| 98 | Bhabha scattering ($e^+ e^-$) is obtained by integrating Eq.~\ref{comion.b}.
|
|---|
| 99 | In {\sc Geant4} $T_{cut}$ is always 1 keV or larger. For delta ray energies
|
|---|
| 100 | much larger than the excitation energy of the material ($T \gg I$), the
|
|---|
| 101 | total cross section becomes \cite{eion.messel} for M\"{o}ller scattering,
|
|---|
| 102 | \begin{eqnarray}
|
|---|
| 103 | \sigma ( Z,E,T_{cut} ) & = & \frac {2 \pi r_e^2 Z}{\beta^2(\gamma -1)} \times \\
|
|---|
| 104 | & & \left[\frac{(\gamma-1)^2} {\gamma^2}\left(\frac{1}{2}-x\right)
|
|---|
| 105 | +\frac{1}{x}-\frac{1}{1-x}-\frac{2\gamma-1}{\gamma^2}\ln
|
|---|
| 106 | \frac{1-x}{x}\right] , \nonumber
|
|---|
| 107 | \end{eqnarray}
|
|---|
| 108 | and for Bhabha scattering ($e^+ e^-$),
|
|---|
| 109 | \begin{eqnarray}
|
|---|
| 110 | \sigma (Z,E,T_{cut}) & = & \frac{ 2 \pi r_e^2 Z }{(\gamma -1)} \times \\
|
|---|
| 111 | & & \left [\frac {1 }{\beta^2} \left(\frac{1}{x}-1\right)
|
|---|
| 112 | + B_1 \ln x + B_2 (1-x) -
|
|---|
| 113 | \frac {B_3 } {2} ( 1-x^2 ) +\frac{B_4}{3}(1-x^3)\right] . \nonumber
|
|---|
| 114 | \end{eqnarray}
|
|---|
| 115 | Here
|
|---|
| 116 | \[
|
|---|
| 117 | \begin{array}{lcllcl}
|
|---|
| 118 | \gamma & = & E/mc^2 &
|
|---|
| 119 | B_1 & = & 2-y^2 \\
|
|---|
| 120 | \beta^2 & = & 1-(1/\gamma^2) &
|
|---|
| 121 | B_2 & = & (1-2y)(3+y^2 ) \\
|
|---|
| 122 | x & = & T_{cut}/(E-mc^2) &
|
|---|
| 123 | B_3 & = & (1-2y)^2+(1-2y)^3 \\
|
|---|
| 124 | y & = & 1/(\gamma + 1) &
|
|---|
| 125 | B_4 & = & (1-2y)^3 .
|
|---|
| 126 | \end{array}
|
|---|
| 127 | \]
|
|---|
| 128 | The above formulas give the total cross section for scattering above the
|
|---|
| 129 | threshold energies
|
|---|
| 130 |
|
|---|
| 131 | \begin{equation}
|
|---|
| 132 | T_{\rm Moller}^{\rm thr} =2T_{cut} \mbox{\hspace{2cm}and\hspace{2cm}}
|
|---|
| 133 | T_{\rm Bhabha}^{\rm thr} = T_{cut} .
|
|---|
| 134 | \end{equation}
|
|---|
| 135 |
|
|---|
| 136 | \noindent
|
|---|
| 137 | In a given material the mean free path is then
|
|---|
| 138 | \begin{equation}
|
|---|
| 139 | \begin{array}{lll}
|
|---|
| 140 | \lambda = (n_{at} \cdot \sigma)^{-1} & or &
|
|---|
| 141 | \lambda = \left( \sum_i n_{ati} \cdot \sigma_i \right)^{-1} .
|
|---|
| 142 | \end{array}
|
|---|
| 143 | \end{equation}
|
|---|
| 144 |
|
|---|
| 145 | \subsection{Simulation of Delta-ray Production}
|
|---|
| 146 | \subsubsection{Differential Cross Section}
|
|---|
| 147 |
|
|---|
| 148 | For $T \gg I$ the differential cross section per atom becomes
|
|---|
| 149 | \cite{eion.messel} for M\"{o}ller scattering,
|
|---|
| 150 | \begin{eqnarray}
|
|---|
| 151 | \label{eion.i}
|
|---|
| 152 | \frac{d\sigma }{d \epsilon } &=& \frac{2 \pi r_e^2 Z}{\beta^2 (\gamma -1)}
|
|---|
| 153 | \times \\
|
|---|
| 154 | & & \left[ \frac{(\gamma -1 )^2} {\gamma^2 }+\frac{1}{\epsilon}
|
|---|
| 155 | \left(\frac{1}{\epsilon}-\frac{2 \gamma -1 } {\gamma^2 } \right) +
|
|---|
| 156 | \frac{1}{1- \epsilon}\left(\frac{1} {1- \epsilon} - \frac{2 \gamma - 1}
|
|---|
| 157 | {\gamma^2 }\right) \right] \nonumber
|
|---|
| 158 | \end{eqnarray}
|
|---|
| 159 | and for Bhabha scattering,
|
|---|
| 160 | \begin{equation}
|
|---|
| 161 | \label{eion.j}
|
|---|
| 162 | \frac{d \sigma}{d \epsilon}=\frac{2 \pi r_e^2 Z}{(\gamma -1)}\left[
|
|---|
| 163 | \frac{1} {\beta^2 \epsilon^2}-\frac{B_1}{\epsilon}+B_2 - B_3 \epsilon
|
|---|
| 164 | + B_4 \epsilon^2\right] .
|
|---|
| 165 | \end{equation}
|
|---|
| 166 | Here $\epsilon = T/(E-mc^2)$. The kinematical limits of $\epsilon$ are
|
|---|
| 167 | \[
|
|---|
| 168 | \epsilon_0 = \frac{T_{cut}}{E-mc^2} \leq \epsilon \leq \frac{1}{2}
|
|---|
| 169 | \mbox{\hspace{.2cm} for $e^- e^-$} \hspace{2cm}
|
|---|
| 170 | \epsilon_0 = \frac{T_{cut}}{E-mc^2} \leq \epsilon \leq 1
|
|---|
| 171 | \mbox{\hspace{.2cm} for $e^+ e^-$} .
|
|---|
| 172 | \]
|
|---|
| 173 |
|
|---|
| 174 | \subsubsection{Sampling}
|
|---|
| 175 | The delta ray energy is sampled according to methods discussed in
|
|---|
| 176 | Chapter \ref{secmessel}. Apart from normalization, the cross section can
|
|---|
| 177 | be factorized as
|
|---|
| 178 | \begin{equation}
|
|---|
| 179 | \frac{d\sigma}{d\epsilon}=f(\epsilon) g(\epsilon) .
|
|---|
| 180 | \end{equation}
|
|---|
| 181 | For $e^- e^-$ scattering
|
|---|
| 182 | \begin{eqnarray}
|
|---|
| 183 | f(\epsilon)&=&\frac{1}{\epsilon^2} \frac{\epsilon_0 }{1- 2\epsilon_0} \\
|
|---|
| 184 | g(\epsilon)&=&\frac{4}{9\gamma^2 - 10 \gamma + 5}\left[(\gamma -1)^2
|
|---|
| 185 | \epsilon^2 - (2 \gamma^2 +2\gamma -1) \frac{\epsilon} {1- \epsilon }+
|
|---|
| 186 | \frac{\gamma^2}{(1- \epsilon )^2 }\right]
|
|---|
| 187 | \end{eqnarray}
|
|---|
| 188 | and for $e^+ e^-$ scattering
|
|---|
| 189 | \begin{eqnarray}
|
|---|
| 190 | f(\epsilon)&=&\frac{1}{\epsilon^2} \frac{\epsilon_0}{1- \epsilon_0 } \\
|
|---|
| 191 | g(\epsilon)&=&\frac{B_0 -B_1 \epsilon +B_2 \epsilon^2
|
|---|
| 192 | -B_3 \epsilon^3 +B_4 \epsilon ^4}{B_ 0-B_1\epsilon_0
|
|---|
| 193 | +B_2\epsilon_0^2
|
|---|
| 194 | -B_3 \epsilon_0^3 +B_4 \epsilon_0^4} .
|
|---|
| 195 | \end{eqnarray}
|
|---|
| 196 | Here $ B_0=\gamma^2/(\gamma^2-1)$ and all other quantities have been defined
|
|---|
| 197 | above.
|
|---|
| 198 |
|
|---|
| 199 |
|
|---|
| 200 | To choose $\epsilon$, and hence the delta ray energy,
|
|---|
| 201 | \begin{enumerate}
|
|---|
| 202 | \item $\epsilon$ is sampled from $f(\epsilon)$
|
|---|
| 203 | \item the rejection function $g(\epsilon)$ is calculated using the sampled
|
|---|
| 204 | value of $\epsilon$
|
|---|
| 205 | \item $\epsilon$ is accepted with probability $g(\epsilon)$.
|
|---|
| 206 | \end{enumerate}
|
|---|
| 207 | After the successful sampling of $\epsilon$, the direction of the ejected
|
|---|
| 208 | electron is generated with respect to the direction of the incident
|
|---|
| 209 | particle. The azimuthal angle $\phi$ is generated isotropically and the
|
|---|
| 210 | polar angle $\theta$ is calculated from energy-momentum conservation.
|
|---|
| 211 | This information is used to calculate the energy and momentum of both the
|
|---|
| 212 | scattered incident particle and the ejected electron, and to transform them
|
|---|
| 213 | to the global coordinate system.
|
|---|
| 214 |
|
|---|
| 215 | \subsection{Status of this document}
|
|---|
| 216 | \ 9.10.98 created by L. Urb\'an. \\
|
|---|
| 217 | 29.07.01 revised by M.Maire. \\
|
|---|
| 218 | 13.12.01 minor cosmetic by M.Maire. \\
|
|---|
| 219 | 24.05.02 re-written by D.H. Wright. \\
|
|---|
| 220 | 01.12.03 revised by V. Ivanchenko. \\
|
|---|
| 221 |
|
|---|
| 222 | \begin{latexonly}
|
|---|
| 223 |
|
|---|
| 224 | \begin{thebibliography}{99}
|
|---|
| 225 |
|
|---|
| 226 | \bibitem{eion.messel}
|
|---|
| 227 | H.~Messel and D.F.~Crawford. {\em Pergamon Press, Oxford (1970).}
|
|---|
| 228 | \bibitem{ioni.icru1}
|
|---|
| 229 | ICRU (A.~Allisy et al), Stopping Powers for Electrons and Positrons,
|
|---|
| 230 | {\em ICRU Report No.37 (1984).}
|
|---|
| 231 | \bibitem{eion.sternheimer}
|
|---|
| 232 | R.M.~Sternheimer. {\em Phys.Rev. B3 (1971) 3681.}
|
|---|
| 233 | \end{thebibliography}
|
|---|
| 234 |
|
|---|
| 235 | \end{latexonly}
|
|---|
| 236 |
|
|---|
| 237 | \begin{htmlonly}
|
|---|
| 238 |
|
|---|
| 239 | \subsection{Bibliography}
|
|---|
| 240 |
|
|---|
| 241 | \begin{enumerate}
|
|---|
| 242 | \item H.~Messel and D.F.~Crawford. {\em Pergamon Press, Oxford (1970).}
|
|---|
| 243 | \item ICRU (A.~Allisy et al), Stopping Powers for Electrons and Positrons,
|
|---|
| 244 | {\em ICRU Report No.37 (1984).}
|
|---|
| 245 | \item R.M.~Sternheimer. {\em Phys.Rev. B3 (1971) 3681.}
|
|---|
| 246 | \end{enumerate}
|
|---|
| 247 |
|
|---|
| 248 | \end{htmlonly}
|
|---|
| 249 |
|
|---|
| 250 |
|
|---|
| 251 |
|
|---|
| 252 |
|
|---|
| 253 |
|
|---|
| 254 |
|
|---|
| 255 |
|
|---|