source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/electromagnetic/standard/eion.tex @ 1288

Last change on this file since 1288 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 9.1 KB
Line 
1\section[Ionization]{Ionization} \label{sec:em.eion}
2
3\subsection{Method}
4
5The $G4eIonisation$ class provides the continuous and discrete
6energy losses of electrons and positrons due to ionization in a material
7according to the approach described in Section \ref{en_loss}.
8The value of the maximum energy transferable to a free electron $T_{max}$ 
9is given by the following relation:
10\begin{equation}
11\label{eion.c}
12T_{max} = \left\{ \begin{array}{ll}
13             E-mc^2 & {for \hspace{.2cm} e^+}  \\
14             (E-mc^2)/2 & {for \hspace{.2cm} e^- } \\
15              \end{array} \right .
16\end{equation}
17where $mc^2$ is the electron mass. 
18Above a given threshold energy the energy loss is simulated by the
19explicit production of delta rays by M\"{o}ller scattering ($e^- e^-$), or
20Bhabha scattering ($e^+ e^-$).  Below the threshold the soft electrons
21ejected are simulated as continuous energy loss by the incident
22${e^{\pm}}$.
23
24\subsection{Continuous Energy Loss} \label{seceloss}
25
26The integration of \ref{comion.a} leads to the Berger-Seltzer
27formula \cite{eion.messel}:
28\begin{equation}
29\label{eion.d e}
30\left. \frac{dE}{dx} \right]_{T < T_{cut}} =
31       2 \pi r_e^2 mc^2 n_{el} \frac{1}{\beta^2}
32       \left [\ln \frac{2(\gamma + 1)} {(I/mc^2)^2}+ F^{\pm} (\tau , \tau_{up})
33       - \delta \right ]
34\end{equation}
35with
36\[
37\begin{array}{ll}
38r_e          & \mbox{classical electron radius:}
39                  \quad e^2/(4 \pi \epsilon_0 mc^2 )        \\
40mc^2         & \mbox{mass energy of the electron}           \\
41n_{el}       & \mbox{electron density in the material}      \\
42I            & \mbox{mean excitation energy in the material}\\
43\gamma       & \mbox{$E/mc^2$}                              \\
44\beta^2      & 1-(1/\gamma^2)                               \\
45\tau         & \gamma-1                                     \\
46T_{cut}      & \mbox{minimum energy cut for $\delta$ -ray production} \\
47\tau_c       & \mbox{$T_{cut}/mc^2$}                        \\
48\tau_{max}   & \mbox{maximum energy transfer:
49                     $\tau$ for $e^+$, $\tau/2$ for $e^-$}  \\
50\tau_{up}    & \min(\tau_c,\tau_{max})                      \\
51\delta       & \mbox{density effect function} .
52\end{array}
53\]
54In an elemental material the electron density is
55$$ n_{el} = Z \: n_{at} = Z \: \frac{\mathcal{N}_{av} \rho}{A} . $$
56$\mathcal{N}_{av}$ is Avogadro's number, $\rho$ is the material density,
57and $A$ is the mass of a mole.  In a compound material
58$$ 
59n_{el} = \sum_i Z_i \: n_{ati}
60       = \sum_i Z_i \: \frac{\mathcal{N}_{av} w_i \rho}{A_i} ,
61$$
62where $w_i$ is the proportion by mass of the $i^{th}$ element, with molar
63mass $A_i$ .
64\par
65\noindent 
66The mean excitation energies $I$ for all elements are taken from
67\cite{ioni.icru1}.
68\par
69\noindent 
70The functions $ F^{\pm}$  are given by :
71\begin{eqnarray}
72F^+ (\tau,\tau_{up}) & = &\ln(\tau\tau_{up} ) \\ 
73 & & -\frac{\tau_{up}^2}{\tau}\left[\tau + 2 \tau_{up} -
74\frac{3\tau_{up}^2 y } {2} -\left(\tau_{up} - \frac{\tau_{up}^3 }{3} \right) y^2
75- \left (\frac{\tau_{up}^2}{2} - \tau
76       \frac{\tau_{up}^3}{3} + \frac{\tau_{up}^4 } {4} \right)
77          y^\right\nonumber
78\end{eqnarray}
79
80\begin{eqnarray}
81F^- (\tau,\tau_{up} ) & = & -1 -\beta^2 \\
82 & & +\ln \left [(\tau - \tau_{up})
83\tau_{up} \right ] + \frac{\tau}{\tau -\tau_{up}}
84+ \frac{1}{\gamma^2} \left [
85\frac{\tau_{up}^2}{2} + ( 2\tau +1) \ln
86\left (1- \frac{\tau_{up}}{\tau} \right ) \right ]   \nonumber
87\end{eqnarray}
88where $y = 1/(\gamma+1)$.
89
90 
91The density effect correction is calculated according to the formalism of
92Sternheimer \cite{eion.sternheimer}:
93\input{electromagnetic/utils/densityeffect}
94
95\subsection{Total Cross Section per Atom and Mean Free Path } \label{sectot}
96
97The total cross section per atom for M\"{o}ller scattering ($e^- e^-$) and
98Bhabha scattering ($e^+ e^-$) is obtained by integrating Eq.~\ref{comion.b}.
99In {\sc Geant4} $T_{cut}$ is always 1 keV or larger.  For delta ray energies
100much larger than the excitation energy of the material ($T \gg I$), the
101total cross section becomes \cite{eion.messel} for M\"{o}ller scattering,
102\begin{eqnarray}
103\sigma ( Z,E,T_{cut} ) & = & \frac {2 \pi r_e^2 Z}{\beta^2(\gamma -1)} \times \\
104 & &     \left[\frac{(\gamma-1)^2} {\gamma^2}\left(\frac{1}{2}-x\right)
105         +\frac{1}{x}-\frac{1}{1-x}-\frac{2\gamma-1}{\gamma^2}\ln
106         \frac{1-x}{x}\right] , \nonumber
107\end{eqnarray}
108and for Bhabha scattering ($e^+ e^-$),
109\begin{eqnarray}
110\sigma (Z,E,T_{cut}) & = & \frac{ 2 \pi r_e^2 Z }{(\gamma -1)} \times \\
111  & &  \left [\frac {1 }{\beta^2}  \left(\frac{1}{x}-1\right)
112       + B_1 \ln x + B_2 (1-x) -
113       \frac {B_3 } {2} ( 1-x^2 ) +\frac{B_4}{3}(1-x^3)\right] .  \nonumber
114\end{eqnarray}
115Here
116\[
117\begin{array}{lcllcl}
118 \gamma  & = & E/mc^2                &
119 B_1     & = & 2-y^2                \\
120 \beta^2 & = & 1-(1/\gamma^2)        &
121 B_2     & = & (1-2y)(3+y^2 )       \\
122 x       & = & T_{cut}/(E-mc^2)      &
123 B_3     & = & (1-2y)^2+(1-2y)^3    \\
124 y       & = & 1/(\gamma + 1)        &
125 B_4     & = & (1-2y)^3 . 
126\end{array}
127\]
128The above formulas give the total cross section for scattering above the
129threshold energies
130
131\begin{equation}
132T_{\rm Moller}^{\rm thr} =2T_{cut}  \mbox{\hspace{2cm}and\hspace{2cm}}
133T_{\rm Bhabha}^{\rm thr} = T_{cut} .
134\end{equation}
135
136\noindent
137In a given material the mean free path is then
138\begin{equation}
139\begin{array}{lll} 
140\lambda = (n_{at} \cdot \sigma)^{-1} & or &
141\lambda = \left( \sum_i n_{ati} \cdot \sigma_i \right)^{-1} .
142\end{array}
143\end{equation}
144
145\subsection{Simulation of Delta-ray Production}
146\subsubsection{Differential Cross Section}
147
148For $T \gg I$ the differential cross section per atom becomes
149\cite{eion.messel} for M\"{o}ller scattering,
150\begin{eqnarray}
151\label{eion.i}
152\frac{d\sigma }{d \epsilon } &=& \frac{2 \pi r_e^2 Z}{\beta^2 (\gamma -1)}
153\times \\
154 & & \left[ \frac{(\gamma -1 )^2}  {\gamma^2 }+\frac{1}{\epsilon}
155     \left(\frac{1}{\epsilon}-\frac{2 \gamma -1 } {\gamma^2 } \right) +
156     \frac{1}{1- \epsilon}\left(\frac{1} {1- \epsilon} - \frac{2 \gamma - 1}
157     {\gamma^2 }\right\right] \nonumber
158\end{eqnarray}
159and for Bhabha scattering,
160\begin{equation}
161\label{eion.j}
162\frac{d \sigma}{d \epsilon}=\frac{2 \pi r_e^2 Z}{(\gamma -1)}\left[
163\frac{1} {\beta^2 \epsilon^2}-\frac{B_1}{\epsilon}+B_2 - B_3 \epsilon
164+ B_4 \epsilon^2\right] .
165 \end{equation}
166Here $\epsilon = T/(E-mc^2)$.  The kinematical limits of $\epsilon$ are
167\[
168\epsilon_0 = \frac{T_{cut}}{E-mc^2} \leq \epsilon \leq \frac{1}{2}
169\mbox{\hspace{.2cm} for $e^- e^-$} \hspace{2cm}
170\epsilon_0 = \frac{T_{cut}}{E-mc^2} \leq \epsilon \leq 1
171\mbox{\hspace{.2cm} for $e^+ e^-$} .
172\]
173
174\subsubsection{Sampling}
175The delta ray energy is sampled according to methods discussed in
176Chapter \ref{secmessel}.  Apart from normalization, the cross section can
177be factorized as
178\begin{equation}
179\frac{d\sigma}{d\epsilon}=f(\epsilon) g(\epsilon) .
180\end{equation}
181For $e^- e^-$ scattering
182\begin{eqnarray}
183f(\epsilon)&=&\frac{1}{\epsilon^2} \frac{\epsilon_0 }{1- 2\epsilon_0} \\
184g(\epsilon)&=&\frac{4}{9\gamma^2 - 10 \gamma + 5}\left[(\gamma -1)^2
185\epsilon^2 - (2 \gamma^2 +2\gamma -1) \frac{\epsilon} {1- \epsilon }+
186\frac{\gamma^2}{(1- \epsilon )^2 }\right]
187\end{eqnarray}
188and for $e^+ e^-$ scattering
189\begin{eqnarray}
190  f(\epsilon)&=&\frac{1}{\epsilon^2} \frac{\epsilon_0}{1- \epsilon_0 } \\
191  g(\epsilon)&=&\frac{B_0 -B_1 \epsilon +B_2 \epsilon^2
192       -B_3 \epsilon^3 +B_4 \epsilon ^4}{B_ 0-B_1\epsilon_0
193       +B_2\epsilon_0^2
194       -B_3 \epsilon_0^3 +B_4 \epsilon_0^4} .
195\end{eqnarray}
196Here $ B_0=\gamma^2/(\gamma^2-1)$ and all other quantities have been defined
197above.
198
199
200To choose $\epsilon$, and hence the delta ray energy,
201\begin{enumerate}
202\item $\epsilon$ is sampled from $f(\epsilon)$
203\item the rejection function $g(\epsilon)$ is calculated using the sampled
204      value of $\epsilon$
205\item $\epsilon$ is accepted with probability $g(\epsilon)$.
206\end{enumerate}
207After the successful sampling of $\epsilon$, the direction of the ejected
208electron is generated with respect to the direction of the incident
209particle.  The azimuthal angle $\phi$ is generated isotropically and the
210polar angle $\theta$ is calculated from energy-momentum conservation.
211This information is used to calculate the energy and momentum of both the
212scattered incident particle and the ejected electron, and to transform them
213to the global coordinate system.
214
215\subsection{Status of this document}
216 \ 9.10.98 created by L. Urb\'an. \\
217  29.07.01 revised by M.Maire.     \\
218  13.12.01 minor cosmetic by M.Maire.  \\
219  24.05.02 re-written by D.H. Wright. \\
220  01.12.03 revised by V. Ivanchenko.    \\
221
222\begin{latexonly}
223
224\begin{thebibliography}{99}
225
226\bibitem{eion.messel}
227  H.~Messel and D.F.~Crawford. {\em Pergamon Press, Oxford (1970).}
228\bibitem{ioni.icru1} 
229  ICRU (A.~Allisy et al), Stopping Powers for Electrons and Positrons,
230  {\em ICRU Report No.37 (1984).}
231\bibitem{eion.sternheimer}
232  R.M.~Sternheimer. {\em Phys.Rev. B3 (1971) 3681.}
233\end{thebibliography}
234
235\end{latexonly}
236
237\begin{htmlonly}
238
239\subsection{Bibliography}
240
241\begin{enumerate}
242\item H.~Messel and D.F.~Crawford. {\em Pergamon Press, Oxford (1970).}
243\item ICRU (A.~Allisy et al), Stopping Powers for Electrons and Positrons,
244  {\em ICRU Report No.37 (1984).}
245\item R.M.~Sternheimer. {\em Phys.Rev. B3 (1971) 3681.}
246\end{enumerate}
247
248\end{htmlonly}
249
250
251
252
253
254
255
Note: See TracBrowser for help on using the repository browser.