| 1 |
|
|---|
| 2 | \section[Multiple Scattering]{Multiple Scattering}
|
|---|
| 3 |
|
|---|
| 4 | Elastic scattering of electrons and other charged particles is an important
|
|---|
| 5 | component of any transport code. Elastic cross section is huge when particle
|
|---|
| 6 | energy decreases, so multiple scattering (MSC) approach should be introduced in order
|
|---|
| 7 | to have acceptable CPU performance of the simulation.
|
|---|
| 8 | Geant4 uses a universal interface {\it G4VMultipleScattering}
|
|---|
| 9 | is used by all MSC processes:
|
|---|
| 10 | \begin{itemize}
|
|---|
| 11 | \item
|
|---|
| 12 | G4eMultipleScattering;
|
|---|
| 13 | \item
|
|---|
| 14 | G4hMultipleScattering;
|
|---|
| 15 | \item
|
|---|
| 16 | G4MuMultipleScattering.
|
|---|
| 17 | \end{itemize}
|
|---|
| 18 | For concrete simulation the {\it G4VMscModel} interface is used, which is an extension
|
|---|
| 19 | of the base {\it G4VEmModel} interface. The following models are available:
|
|---|
| 20 | \begin{itemize}
|
|---|
| 21 | \item
|
|---|
| 22 | G4UrbanMscModel90 - Geant4 v9.0 applied to muons, hadrons and ions;
|
|---|
| 23 | \item
|
|---|
| 24 | G4UrbanMscModel92 - Geant4 v9.2 (current default) applied for electron and positron;
|
|---|
| 25 | \item
|
|---|
| 26 | G4UrbanMscModel93 - Geant4 v9.3 applied for electron and positron for Option2, Option3 and other EM Physics Lists;
|
|---|
| 27 | \item
|
|---|
| 28 | G4GoudsmitSaundersonModel - for electrons and positrons (beta-version);
|
|---|
| 29 | \item
|
|---|
| 30 | G4WentzelVIModel - for muons and hadrons, should be included in Physics Lists together with G4CoulombScattering process;
|
|---|
| 31 | \end{itemize}
|
|---|
| 32 | The last models are not yet in the production mode, so below we will concentrate
|
|---|
| 33 | on models developed by L.~Urban \cite{msc.urban}.
|
|---|
| 34 |
|
|---|
| 35 | \subsection{Introduction}
|
|---|
| 36 |
|
|---|
| 37 | MSC simulation algorithms can be classified as either {\em detailed} or
|
|---|
| 38 | {\em condensed}. In the detailed algorithms, all the collisions/interactions
|
|---|
| 39 | experienced by the particle are simulated. This simulation can be considered
|
|---|
| 40 | as exact; it gives the same results as the solution of the transport equation.
|
|---|
| 41 | However, it can be used only if the number of collisions is not too large, a
|
|---|
| 42 | condition fulfilled only for special geometries (such as thin foils), or low
|
|---|
| 43 | enough kinetic energies. For larger kinetic energies the average number of
|
|---|
| 44 | collisions is very large and the detailed simulation becomes very inefficient.
|
|---|
| 45 | High energy simulation codes use condensed simulation algorithms, in which
|
|---|
| 46 | the global effects of the collisions are simulated at the end of a track
|
|---|
| 47 | segment. The global effects generally computed in these codes are the net
|
|---|
| 48 | displacement, energy loss, and change of direction of the charged particle.
|
|---|
| 49 | These quantities are computed from the multiple scattering theories used in
|
|---|
| 50 | the codes. The accuracy of the condensed simulations is limited by the
|
|---|
| 51 | approximations of the multiple scattering theories. \\
|
|---|
| 52 |
|
|---|
| 53 | \noindent
|
|---|
| 54 | Most particle physics simulation codes use the multiple scattering theories
|
|---|
| 55 | of Moli\`ere \cite{msc.moliere}, Goudsmit and Saunderson \cite{msc.goudsmit}
|
|---|
| 56 | and Lewis \cite{msc.lewis}. The theories of Moli\`ere and Goudsmit-Saunderson
|
|---|
| 57 | give only the angular distribution after a step, while the Lewis theory
|
|---|
| 58 | computes the moments of the spatial distribution as well. None of these
|
|---|
| 59 | MSC theories gives the probability distribution of the spatial displacement.
|
|---|
| 60 | Therefore each of the MSC simulation codes incorporates its own algorithm to
|
|---|
| 61 | determine the spatial displacement of the charged particle after a given step.
|
|---|
| 62 | These algorithms are not exact, of course, and are responsible for most of the
|
|---|
| 63 | uncertainties in the MSC codes. Therefore the simulation results can depend
|
|---|
| 64 | on the value of the step length and generally one has to select the value of
|
|---|
| 65 | the step length carefully. \\
|
|---|
| 66 |
|
|---|
| 67 | \noindent
|
|---|
| 68 | A new class of MSC simulation, the {\em mixed} simulation algorithms (see
|
|---|
| 69 | e.g.\cite{msc.fernandez}), appeared in the literature recently. The mixed
|
|---|
| 70 | algorithm simulates the {\em hard} collisions one by one and uses a MSC theory to
|
|---|
| 71 | treat the effects of the {\em soft} collisions at the end of a given step. Such
|
|---|
| 72 | algorithms can prevent the number of steps from becoming too large and also
|
|---|
| 73 | reduce the dependence on the step length. \\
|
|---|
| 74 |
|
|---|
| 75 | \noindent
|
|---|
| 76 | The MSC model used in Geant4 belongs to the class of condensed
|
|---|
| 77 | simulations. It uses model functions
|
|---|
| 78 | to determine the angular and spatial distributions after a step. The
|
|---|
| 79 | functions have been chosen in such a way as to give the same moments of the
|
|---|
| 80 | (angular and spatial) distributions as the Lewis theory \cite{msc.lewis}.
|
|---|
| 81 |
|
|---|
| 82 | \subsection{Definition of Terms}
|
|---|
| 83 |
|
|---|
| 84 | In simulation, a particle is transported by steps through the detector
|
|---|
| 85 | geometry. The shortest distance between the endpoints of a step is called
|
|---|
| 86 | the {\em geometrical path length}, $z$.
|
|---|
| 87 | In the absence of a magnetic field, this is a straight line.
|
|---|
| 88 | For non-zero fields, $z$ is the shortest distance along
|
|---|
| 89 | a curved trajectory. Constraints on $z$ are imposed when particle tracks
|
|---|
| 90 | cross volume boundaries. The path length of an actual particle, however, is
|
|---|
| 91 | usually longer than the geometrical path length, due to physical interactions
|
|---|
| 92 | like multiple scattering.
|
|---|
| 93 | This distance is called the {\em true path length}, $t$.
|
|---|
| 94 | Constraints on $t$ are imposed by the physical processes acting on the
|
|---|
| 95 | particle. \\
|
|---|
| 96 |
|
|---|
| 97 | \noindent
|
|---|
| 98 | The properties of the multiple scattering process are completely determined
|
|---|
| 99 | by the {\em transport mean free paths}, $\lambda_k$, which are functions of the
|
|---|
| 100 | energy in a given material. The $k$-th transport mean free path is defined as
|
|---|
| 101 |
|
|---|
| 102 | \begin{equation}
|
|---|
| 103 | \frac {1}{\lambda_k} = 2 \pi n_a \int_{-1}^{1} \left[1 - P_k(cos\chi) \right]
|
|---|
| 104 | \frac{d\sigma(\chi)}{d\Omega} d(cos\chi)
|
|---|
| 105 | \label{msc.a1}
|
|---|
| 106 | \end{equation}
|
|---|
| 107 |
|
|---|
| 108 | \noindent
|
|---|
| 109 | where $d\sigma(\chi)/d\Omega$ is the differential cross section of the
|
|---|
| 110 | scattering, $P_k(cos\chi)$ is the $k$-th Legendre polynomial, and $n_a$ is the
|
|---|
| 111 | number of atoms per volume. \\
|
|---|
| 112 |
|
|---|
| 113 | \noindent
|
|---|
| 114 | Most of the mean properties of MSC computed in the simulation codes depend
|
|---|
| 115 | only on the first and second transport mean free paths. The mean value of
|
|---|
| 116 | the geometrical path length (first moment) corresponding to a given true path
|
|---|
| 117 | length $t$ is given by
|
|---|
| 118 | \begin{equation}
|
|---|
| 119 | \langle z \rangle =
|
|---|
| 120 | \lambda_1 \left[ 1-\exp \left(-\frac{t}{\lambda_1} \right)\right]
|
|---|
| 121 | \label{msc.a}
|
|---|
| 122 | \end{equation}
|
|---|
| 123 |
|
|---|
| 124 | \noindent
|
|---|
| 125 | Eq.~\ref{msc.a} is an exact result for the mean value of $z$ if the
|
|---|
| 126 | differential cross section has axial symmetry and the energy loss can be
|
|---|
| 127 | neglected. The transformation between true and geometrical path lengths is
|
|---|
| 128 | called the {\em path length correction}. This formula and other expressions for
|
|---|
| 129 | the first moments of the spatial distribution were taken from either
|
|---|
| 130 | \cite{msc.fernandez} or \cite{msc.kawrakow}, but were originally
|
|---|
| 131 | calculated by Goudsmit and Saunderson \cite{msc.goudsmit} and Lewis
|
|---|
| 132 | \cite{msc.lewis}. \\
|
|---|
| 133 |
|
|---|
| 134 | \noindent
|
|---|
| 135 | At the end of the true step length, $t$, the scattering angle is $\theta$.
|
|---|
| 136 | The mean value of $cos\theta$ is
|
|---|
| 137 | \begin{equation}
|
|---|
| 138 | \langle cos\theta \rangle = \exp \left[-\frac{t}{\lambda_1} \right]
|
|---|
| 139 | \label{msc.c}
|
|---|
| 140 | \end{equation}
|
|---|
| 141 | The variance of $cos\theta$ can be written as
|
|---|
| 142 | \begin{equation}
|
|---|
| 143 | \sigma^2 = \langle cos^2\theta \rangle - \langle cos\theta \rangle ^2 =
|
|---|
| 144 | \frac{1 + 2 e^{- 2 \kappa \tau}} {3} - e^{-2 \tau}
|
|---|
| 145 | \label{msc.c1}
|
|---|
| 146 | \end{equation}
|
|---|
| 147 |
|
|---|
| 148 | \noindent
|
|---|
| 149 | where $\tau = t/\lambda_1$ and $\kappa = \lambda_1/\lambda_2$. \\
|
|---|
| 150 |
|
|---|
| 151 | \noindent
|
|---|
| 152 | The mean lateral displacement is given by a more complicated formula
|
|---|
| 153 | \cite{msc.fernandez}, but this quantity can also be calculated relatively
|
|---|
| 154 | easily and accurately. The square of the {\em mean lateral displacement} is
|
|---|
| 155 | \begin{equation}
|
|---|
| 156 | \langle x^2 + y^2 \rangle = \frac{4 \lambda_1^2}{3} \ \left[\tau
|
|---|
| 157 | - \frac{\kappa+1}{\kappa}
|
|---|
| 158 | + \frac{\kappa}{\kappa-1} e^{-\tau} -
|
|---|
| 159 | \frac{1}{\kappa (\kappa -1)} e^{-\kappa \tau} \right]
|
|---|
| 160 | \label{msc.e1}
|
|---|
| 161 | \end{equation}
|
|---|
| 162 |
|
|---|
| 163 | \noindent
|
|---|
| 164 | Here it is assumed that the initial particle direction is parallel to the
|
|---|
| 165 | the $z$ axis.\\
|
|---|
| 166 |
|
|---|
| 167 | \noindent
|
|---|
| 168 | The lateral correlation is determined by the equation
|
|---|
| 169 | \begin{equation}
|
|---|
| 170 | \langle x v_x+y v_y \rangle = \frac{2 \lambda_1}{3} \ \left[1
|
|---|
| 171 | - \frac{\kappa}{\kappa-1} e^{-\tau} +
|
|---|
| 172 | \frac{1}{\kappa-1} e^{-\kappa \tau} \right]
|
|---|
| 173 | \label{msc.e2}
|
|---|
| 174 | \end{equation}
|
|---|
| 175 |
|
|---|
| 176 | \noindent
|
|---|
| 177 | where $v_x$ and $v_y$ are the x and y components of the direction unit
|
|---|
| 178 | vector.
|
|---|
| 179 | This equation gives the correlation strength between the final lateral
|
|---|
| 180 | position and final direction.\\
|
|---|
| 181 |
|
|---|
| 182 | \noindent
|
|---|
| 183 | The transport mean free path values have been calculated by Liljequist et al.
|
|---|
| 184 | \cite{msc.liljequist1}, \cite{msc.liljequist2} for electrons and positrons in
|
|---|
| 185 | the kinetic energy range \mbox{100 eV - 20 MeV} in 15 materials. The MSC
|
|---|
| 186 | model in Geant4 uses these values for kinetic energies below 10 MeV.
|
|---|
| 187 | For high energy particles (above 10 MeV) the transport mean free path
|
|---|
| 188 | values have been taken from a paper of R.Mayol and F.Salvat (\cite{msc.mayol}).
|
|---|
| 189 | When necessary, the model linearly interpolates
|
|---|
| 190 | or extrapolates the transport cross section, $\sigma_1 = 1 / \lambda_1$, in
|
|---|
| 191 | atomic number $Z$ and in the square of the particle velocity, $\beta^2$.
|
|---|
| 192 | The ratio $\kappa$ is a very slowly varying function of the energy:
|
|---|
| 193 | $\kappa > 2$ for $T >$ a few keV, and $\kappa \rightarrow 3$ for very high
|
|---|
| 194 | energies (see \cite{msc.kawrakow}). Hence, a constant value of 2.5 is used
|
|---|
| 195 | in the model.\\
|
|---|
| 196 |
|
|---|
| 197 | \noindent
|
|---|
| 198 | Nuclear size effects are negligible for low energy particles and
|
|---|
| 199 | they are accounted for in the Born approximation in \cite{msc.mayol},
|
|---|
| 200 | so there is no need for extra corrections of this kind in the model.
|
|---|
| 201 |
|
|---|
| 202 | \subsection{Path Length Correction}
|
|---|
| 203 |
|
|---|
| 204 | As mentioned above, the path length correction refers to the transformation
|
|---|
| 205 | true path length $\longrightarrow$ geometrical path length and its inverse.
|
|---|
| 206 | The true path length $\longrightarrow$ geometrical path length transformation
|
|---|
| 207 | is given by Eq.~\ref{msc.a} if the step is small and the energy loss can be
|
|---|
| 208 | neglected. If the step is not small the energy dependence makes the
|
|---|
| 209 | transformation more complicated. For this case Eqs. \ref{msc.c},\ref{msc.a}
|
|---|
| 210 | should be modified as
|
|---|
| 211 | \begin{equation}
|
|---|
| 212 | \langle cos\theta \rangle = \exp \left[-\int_0^t \frac{du}{\lambda_1 (u)}
|
|---|
| 213 | \right]
|
|---|
| 214 | \label{msc.ax}
|
|---|
| 215 | \end{equation}
|
|---|
| 216 |
|
|---|
| 217 | \begin{equation}
|
|---|
| 218 | \langle z \rangle = \int_0^t \langle cos\theta \rangle_u \ du
|
|---|
| 219 | \label{msc.bx}
|
|---|
| 220 | \end{equation}
|
|---|
| 221 |
|
|---|
| 222 | \noindent
|
|---|
| 223 | where $\theta$ is the scattering angle, $t$ and $z$ are the true and
|
|---|
| 224 | geometrical path lengths, and $\lambda_1$ is the transport mean free path. \\
|
|---|
| 225 |
|
|---|
| 226 | \noindent
|
|---|
| 227 | In order to compute Eqs. \ref{msc.ax},\ref{msc.bx} the $t$ dependence of the
|
|---|
| 228 | transport mean free path must be known. $\lambda_1$ depends on the kinetic
|
|---|
| 229 | energy of the particle which decreases along the step. All computations in
|
|---|
| 230 | the model use a linear approximation for this $t$ dependence:
|
|---|
| 231 | \begin{equation}
|
|---|
| 232 | \lambda_1(t) = \lambda_{10} ( 1- \alpha t) \label{msc.cx}
|
|---|
| 233 | \end{equation}
|
|---|
| 234 |
|
|---|
| 235 | \noindent
|
|---|
| 236 | Here $\lambda_{10}$ denotes the value of $\lambda_1$ at the start of the step,
|
|---|
| 237 | and $\alpha $ is a constant. It is worth noting that Eq.~\ref{msc.cx} is
|
|---|
| 238 | \emph{not}
|
|---|
| 239 | a crude approximation. It is rather good at low ($ < $ 1 MeV) energy. At
|
|---|
| 240 | higher energies the step is generally much smaller than the range of the
|
|---|
| 241 | particle, so the change in energy is small and so is the change in $\lambda_1$.
|
|---|
| 242 | Using Eqs.~\ref{msc.ax} - \ref{msc.cx} the explicit formula for
|
|---|
| 243 | $\langle cos\theta \rangle$ and $\langle z \rangle$ are :
|
|---|
| 244 | \begin{equation}
|
|---|
| 245 | \langle cos\theta \rangle =
|
|---|
| 246 | \left(1 - \alpha t \right)^{\frac{1}{ \alpha \lambda_{10}}}
|
|---|
| 247 | \label{msc.ff}
|
|---|
| 248 | \end{equation}
|
|---|
| 249 |
|
|---|
| 250 | \begin{equation}
|
|---|
| 251 | \langle z \rangle = \frac{1} { \alpha (1 + \frac{1}{\alpha \lambda_{10}})}
|
|---|
| 252 | \left[ 1 - (1 - \alpha t)^{1+ \frac{1}{ \alpha \lambda_{10}}} \right]
|
|---|
| 253 | \label{msc.dx}
|
|---|
| 254 | \end{equation}
|
|---|
| 255 |
|
|---|
| 256 | \noindent
|
|---|
| 257 | The value of the constant $\alpha $ can be expressed using $\lambda_{10}$ and
|
|---|
| 258 | $\lambda_{11}$ where $\lambda_{11}$ is the value of the transport mean free
|
|---|
| 259 | path at the end of the step
|
|---|
| 260 | \begin{equation}
|
|---|
| 261 | \alpha = \frac{\lambda_{10} - \lambda_{11}} {t \lambda_{10}}
|
|---|
| 262 | \label{msc.ex}
|
|---|
| 263 | \end{equation}
|
|---|
| 264 |
|
|---|
| 265 | \noindent
|
|---|
| 266 | At low energies ( $T_{kin} < M$ , M - particle mass) $\alpha $ has a simpler
|
|---|
| 267 | form:
|
|---|
| 268 | \begin{equation}
|
|---|
| 269 | \alpha = \frac{1} { r_0} \label{msc.fx}
|
|---|
| 270 | \end{equation}
|
|---|
| 271 | where $r_0$ denotes the range of the particle at the start of the step.
|
|---|
| 272 |
|
|---|
| 273 | \noindent
|
|---|
| 274 | It can easily be seen that for a small step (i.e. for a step with small
|
|---|
| 275 | relative energy loss) the formula of $\langle z \rangle$ is
|
|---|
| 276 | \begin{equation}
|
|---|
| 277 | \langle z \rangle =
|
|---|
| 278 | \lambda_{10} \left[ 1-\exp{\left( -\frac{t}{\lambda_{10}}\right)}\right]
|
|---|
| 279 | \label{msc.gx}
|
|---|
| 280 | \end{equation}
|
|---|
| 281 |
|
|---|
| 282 | \noindent
|
|---|
| 283 | Eq. \ref{msc.dx} or \ref{msc.gx} gives the mean value of the geometrical step
|
|---|
| 284 | length for a given true step length. \\
|
|---|
| 285 |
|
|---|
| 286 | \noindent
|
|---|
| 287 | The actual geometrical path length is sampled in the
|
|---|
| 288 | model according to the simple probability density function defined for
|
|---|
| 289 | $v = z/t \in [0 , 1]$ :
|
|---|
| 290 | \begin{equation}
|
|---|
| 291 | f(v) = (k+1)(k+2) v^k (1-v)
|
|---|
| 292 | \label{msc.d2}
|
|---|
| 293 | \end{equation}
|
|---|
| 294 |
|
|---|
| 295 | \noindent
|
|---|
| 296 | The value of the exponent $k$ is computed from the requirement that $f(v)$
|
|---|
| 297 | must give the same mean value for $z = v t$ as Eq.~\ref{msc.dx} or
|
|---|
| 298 | \ref{msc.gx}. Hence
|
|---|
| 299 | \begin{equation}
|
|---|
| 300 | k = \frac{3 \langle z \rangle - t}{t - \langle z \rangle}
|
|---|
| 301 | \label{msc.d3}
|
|---|
| 302 | \end{equation}
|
|---|
| 303 |
|
|---|
| 304 | \noindent
|
|---|
| 305 | The value of $z = v t$ is sampled using $f(v)$ if $k > 0$, otherwise
|
|---|
| 306 | $z = \langle z \rangle$ is used. \\
|
|---|
| 307 |
|
|---|
| 308 | \noindent
|
|---|
| 309 | The geometrical path length $\longrightarrow$ true path length transformation
|
|---|
| 310 | is performed using the mean values. The transformation can be written as
|
|---|
| 311 | \begin{equation}
|
|---|
| 312 | t(z) = \langle t \rangle = -\lambda_1 \log\left(1-\frac{z}{\lambda_1}\right)
|
|---|
| 313 | \label{msc.d4}
|
|---|
| 314 | \end{equation}
|
|---|
| 315 | if the geometrical step is small and
|
|---|
| 316 | \begin{equation}
|
|---|
| 317 | t(z) = \frac{1}{\alpha} \left[ 1 - (1 - \alpha w z)^{\frac{1}{w}} \right]
|
|---|
| 318 | \label{msc.hx}
|
|---|
| 319 | \end{equation}
|
|---|
| 320 | where $$w = 1 + \frac{1}{\alpha \lambda_{10}}$$ if the step is not small, i.e.
|
|---|
| 321 | the energy loss should be taken into account. \\
|
|---|
| 322 |
|
|---|
| 323 | \noindent
|
|---|
| 324 | This transformation is needed when the particle arrives at a volume boundary,
|
|---|
| 325 | causing the step to be geometry-limited. In this case the true path length
|
|---|
| 326 | should be computed in order to have the correct energy loss of the particle
|
|---|
| 327 | after the step.
|
|---|
| 328 |
|
|---|
| 329 | \subsection{Angular Distribution}
|
|---|
| 330 |
|
|---|
| 331 | The quantity $u = cos\theta$ is sampled according to a model function
|
|---|
| 332 | $g(u)$. The shape of this function has been chosen such that
|
|---|
| 333 | Eqs. \ref{msc.c} and \ref{msc.c1} are satisfied. The functional form of $g$ is
|
|---|
| 334 | \begin{equation}
|
|---|
| 335 | g(u) = q [p g_1(u) + (1-p) g_2(u)] + (1-q) g_3(u)
|
|---|
| 336 | \label{msc.d}
|
|---|
| 337 | \end{equation}
|
|---|
| 338 |
|
|---|
| 339 | \noindent
|
|---|
| 340 | where $ 0 \leq p,q \leq 1 $, and the $g_i$ are simple functions of
|
|---|
| 341 | $u = cos\theta$, normalized over the range $ u \in [-1,\ 1] $. The functions
|
|---|
| 342 | $g_i$ have been chosen as
|
|---|
| 343 | \begin{equation}
|
|---|
| 344 | g_1(u) = C_{1}\hspace{3mm} e^{-a (1-u)} \hspace{2cm} -1 \leq u_0 \leq u \leq 1
|
|---|
| 345 | \label{msc.d5}
|
|---|
| 346 | \end{equation}
|
|---|
| 347 | \begin{equation}
|
|---|
| 348 | g_2(u) = C_{2}\hspace{3mm} \frac{1} { (b-u)^d}
|
|---|
| 349 | \hspace{2cm} -1 \leq u \leq u_0 \leq 1
|
|---|
| 350 | \label{msc.d6}
|
|---|
| 351 | \end{equation}
|
|---|
| 352 | \begin{equation}
|
|---|
| 353 | g_3(u) = C_{3} \hspace{4.8cm} -1 \leq u \leq 1
|
|---|
| 354 | \label{msc.d7}
|
|---|
| 355 | \end{equation}
|
|---|
| 356 | where $a > 0$, $b > 0$, $d > 0$ and $u_0$ are model parameters, and the $C_{i}$
|
|---|
| 357 | are normalization constants. It is worth noting that for small scattering
|
|---|
| 358 | angles, $\theta$, $g_1(u)$ is nearly Gaussian ($exp(-\theta^2/2 \theta_0^2)$)
|
|---|
| 359 | if $\theta_0^2 \approx 1 / a$, while $g_2(u)$ has a Rutherford-like tail for
|
|---|
| 360 | large $\theta$, if $b \approx 1$ and $d$ is not far from 2 .
|
|---|
| 361 |
|
|---|
| 362 |
|
|---|
| 363 | \subsection{Determination of the Model Parameters}
|
|---|
| 364 |
|
|---|
| 365 | The parameters $a$, $b$, $d$, $u_0$ and $p$, $q$ are not independent. The
|
|---|
| 366 | requirement that the angular distribution function $g(u)$ and its first
|
|---|
| 367 | derivative be continuous at $u = u_0$ imposes two constraints on the
|
|---|
| 368 | parameters:
|
|---|
| 369 | \begin{equation}
|
|---|
| 370 | p\hspace{1mm} g_1(u_0) = (1-p)\hspace{1mm} g_2(u_0)
|
|---|
| 371 | \label{msc.p1}
|
|---|
| 372 | \end{equation}
|
|---|
| 373 | \begin{equation}
|
|---|
| 374 | p\hspace{1mm} a\hspace{1mm} g_1(u_0) = (1-p)\hspace{1mm}
|
|---|
| 375 | \frac{d}{b-u_0}\hspace{1mm} g_2(u_0)
|
|---|
| 376 | \label{msc.p2}
|
|---|
| 377 | \end{equation}
|
|---|
| 378 |
|
|---|
| 379 | \noindent
|
|---|
| 380 | A third constraint comes from Eq. \ref{msc.ax} : $g(u)$ must give the same
|
|---|
| 381 | mean value for $u$ as the theory. \\
|
|---|
| 382 |
|
|---|
| 383 | \noindent
|
|---|
| 384 | It follows from Eqs. \ref{msc.ff} and \ref{msc.d} that
|
|---|
| 385 | \begin{equation}
|
|---|
| 386 | q \{ p \langle u \rangle_1 + (1-p) \langle u \rangle_2 \} =
|
|---|
| 387 | [ 1 - \alpha \ t ]\ ^{\frac{1}{\alpha \lambda_{10}}}
|
|---|
| 388 | \label{msc.par1}
|
|---|
| 389 | \end{equation}
|
|---|
| 390 | where $\langle u \rangle_i$ denotes the mean value of $u$ computed from the
|
|---|
| 391 | distribution $g_i(u)$. \\
|
|---|
| 392 |
|
|---|
| 393 |
|
|---|
| 394 |
|
|---|
| 395 | \noindent
|
|---|
| 396 | The parameter $a$ was chosen according to a modified Highland-Lynch-Dahl formula
|
|---|
| 397 | for the width of the angular distribution \cite{msc.highland},
|
|---|
| 398 | \cite{msc.lynch}.
|
|---|
| 399 | \begin{equation}
|
|---|
| 400 | a = \frac {0.5} {1 -cos(\theta_0)}
|
|---|
| 401 | \end{equation}
|
|---|
| 402 | where $\theta_0$ is
|
|---|
| 403 | \begin{equation}
|
|---|
| 404 | \theta_0 = \frac {13.6 MeV}{ \beta c p} z_{ch} \sqrt{\frac{t}{X_0}}
|
|---|
| 405 | \ \left[ 1 + h_c \ln \left(\frac{t}{X_0} \right)\ \right]
|
|---|
| 406 | \end{equation}
|
|---|
| 407 |
|
|---|
| 408 | \noindent
|
|---|
| 409 | when the original Highland-Lynch-Dahl formula is used.
|
|---|
| 410 | Here $\theta_0 = \theta^{rms}_{plane}$ is the width of the approximate
|
|---|
| 411 | Gaussian projected angle distribution, $p$, $\beta c$ and $z_{ch}$ are the
|
|---|
| 412 | momentum,
|
|---|
| 413 | velocity and charge number of the incident particle, and $t/X_0$ is the
|
|---|
| 414 | true path length in radiation length unit. The correction term $h_c$ = 0.038
|
|---|
| 415 | in the formula. This value of
|
|---|
| 416 | $\theta_0$ is from a fit to the Moli\`ere distribution for singly charged
|
|---|
| 417 | particles with $\beta = 1$ for all Z, and is accurate to 11 $\%$ or better
|
|---|
| 418 | for $ 10^{-3} \leq t/X_0 \leq 100$ (see e.g. Rev. of Particle Properties,
|
|---|
| 419 | section 23.3). \\
|
|---|
| 420 | \noindent
|
|---|
| 421 | The model uses a slightly modified Highland-Lynch-Dahl formula to
|
|---|
| 422 | compute $\theta_0$.
|
|---|
| 423 |
|
|---|
| 424 | For electrons/positrons the modified $\theta_0$ formula is (see G4UrbanMscModel2)
|
|---|
| 425 | \begin{equation}
|
|---|
| 426 | \theta_0 = \frac {13.6 MeV}{\beta c p} z_{ch} \sqrt{y } c
|
|---|
| 427 | \end{equation}
|
|---|
| 428 | where
|
|---|
| 429 |
|
|---|
| 430 | \begin{equation}
|
|---|
| 431 | y = \ln \left(\frac{t}{X_0}\right)
|
|---|
| 432 | \end{equation}
|
|---|
| 433 |
|
|---|
| 434 | The correction term $c$ is
|
|---|
| 435 |
|
|---|
| 436 | \begin{equation}
|
|---|
| 437 | c = c_1 + c_2 y
|
|---|
| 438 | \end{equation}
|
|---|
| 439 | for $y > -6.5$ and
|
|---|
| 440 | \begin{equation}
|
|---|
| 441 | c = c_1 + c_2 y - 0.011 (6.5 + y)
|
|---|
| 442 | \end{equation}
|
|---|
| 443 | for $y <= 6.5$. The coefficients $c_i$ are
|
|---|
| 444 |
|
|---|
| 445 | \begin{equation}
|
|---|
| 446 | c_1 = 0.885 + ln(Z) \left[ 0.104-0.0177 ln(Z) \right]
|
|---|
| 447 | \end{equation}
|
|---|
| 448 |
|
|---|
| 449 | \begin{equation}
|
|---|
| 450 | c_2 = 0.028 + ln(Z) \left[ 0.012-0.00125 ln(Z) \right]
|
|---|
| 451 | \end{equation}
|
|---|
| 452 |
|
|---|
| 453 | In the case of heavy charged particles (muons,hadrons)
|
|---|
| 454 | the modified formula for $\theta_0$ is (see G4UrbanMscModel90)
|
|---|
| 455 |
|
|---|
| 456 | \begin{equation}
|
|---|
| 457 | \theta_0 = \frac {13.6 MeV}{\beta c p} z_{ch} \sqrt{\frac{t}{X_0} }
|
|---|
| 458 | \left[ 1 + 0.105 \ln \left(\frac{t}{X_0}\right)
|
|---|
| 459 | + 0.0035 \left(\ln \left(\frac{t}{X_0}\right)\right)^2
|
|---|
| 460 | \right] ^{\frac{1}{2}} f \left(Z \right)
|
|---|
| 461 | \end{equation}
|
|---|
| 462 |
|
|---|
| 463 | \noindent
|
|---|
| 464 | where
|
|---|
| 465 | \begin{equation}
|
|---|
| 466 | f \left(Z \right) = 1 - \frac{0.24}{ Z \left(Z + 1 \right) }
|
|---|
| 467 | \end{equation}
|
|---|
| 468 | \noindent
|
|---|
| 469 | is an empirical correction factor based on high energy proton scattering
|
|---|
| 470 | data \cite{msc.shen}.
|
|---|
| 471 | This formula gives a much smaller step dependence in the angular
|
|---|
| 472 | distribution than the Highland form. \\
|
|---|
| 473 |
|
|---|
| 474 | \noindent
|
|---|
| 475 | The value of the parameter $u_0$ has been chosen as
|
|---|
| 476 | \begin{equation}
|
|---|
| 477 | u_0 \hspace{4mm} = \hspace{4mm} 1 - \frac{\xi}{a}
|
|---|
| 478 | \end{equation}
|
|---|
| 479 | where $\xi$ is a constant ($\xi = 3$). \\
|
|---|
| 480 |
|
|---|
| 481 | For electrons/positrons the parameter $d$ is set to
|
|---|
| 482 | \begin{equation}
|
|---|
| 483 | d \hspace{4mm} = \hspace{4mm} d_1
|
|---|
| 484 | \end{equation}
|
|---|
| 485 | for $y >= -13.5$ and
|
|---|
| 486 | \begin{equation}
|
|---|
| 487 | d \hspace{4mm} = \hspace{4mm} d_1 + d_2 (y+13.5)^3
|
|---|
| 488 | \end{equation}
|
|---|
| 489 | for $y < 13.5$
|
|---|
| 490 | where
|
|---|
| 491 | \begin{equation}
|
|---|
| 492 | d_1 \hspace{4mm} = \hspace{2mm} 2.134-\ln(Z) (0.1045-0.00602 ln(Z))
|
|---|
| 493 | \end{equation}
|
|---|
| 494 | \begin{equation}
|
|---|
| 495 | d_2 \hspace{4mm} = \hspace{2mm} 0.001126-\ln(Z) (0.0001089+0.0000247 \ln(Z))
|
|---|
| 496 | \end{equation}
|
|---|
| 497 |
|
|---|
| 498 | For heavy particle the parameter $d$ is set to
|
|---|
| 499 | \begin{equation}
|
|---|
| 500 | d \hspace{4mm} = \hspace{4mm} 2.40 - 0.027 \ Z^ \frac{2}{3}
|
|---|
| 501 | \end{equation}
|
|---|
| 502 | This (empirical) expression is obtained comparing the simulation
|
|---|
| 503 | results to the data of the MuScat experiment \cite{msc.attwood}. \\
|
|---|
| 504 |
|
|---|
| 505 | \noindent
|
|---|
| 506 | The remaining three parameters can be computed from
|
|---|
| 507 | Eqs. \ref{msc.p1} - \ref{msc.par1}.
|
|---|
| 508 | The numerical value of the parameters can be found in the
|
|---|
| 509 | code. \\
|
|---|
| 510 |
|
|---|
| 511 |
|
|---|
| 512 | \noindent
|
|---|
| 513 | It should be noted that in this model there is no step limitation
|
|---|
| 514 | originating from the multiple scattering process. Another important feature
|
|---|
| 515 | of this model is that the sum of the 'true' step lengths of the particle, that
|
|---|
| 516 | is, the total true path length, does not depend on the length of the steps.
|
|---|
| 517 | Most algorithms used in simulations do not have these properties. \\
|
|---|
| 518 |
|
|---|
| 519 | \noindent
|
|---|
| 520 | In the case of heavy charged particles ($\mu$, $\pi$, $p$, etc.) the mean
|
|---|
| 521 | transport free path is calculated from the electron or positron $\lambda_1$
|
|---|
| 522 | values with a 'scaling' applied. This is possible because the transport
|
|---|
| 523 | mean free path $\lambda_1$ depends only on the variable $P \beta c$, where
|
|---|
| 524 | $P$ is the momentum, and $\beta c$ is the velocity of the particle. \\
|
|---|
| 525 |
|
|---|
| 526 | \noindent
|
|---|
| 527 | In its present form the model samples the path length correction and angular
|
|---|
| 528 | distribution from model functions, while for the lateral displacement and
|
|---|
| 529 | the lateral correlation only
|
|---|
| 530 | the mean values are used and all the other correlations are neglected.
|
|---|
| 531 | However, the model
|
|---|
| 532 | is general enough to incorporate other random quantities and correlations in
|
|---|
| 533 | the future.
|
|---|
| 534 |
|
|---|
| 535 | \subsection{The MSC Process in Geant4}
|
|---|
| 536 |
|
|---|
| 537 | The step length of the particles is determined by the physics processes or
|
|---|
| 538 | the geometry of the detectors. The tracking/stepping algorithm checks all the
|
|---|
| 539 | step lengths demanded by the (continuous or discrete) physics processes and
|
|---|
| 540 | determines the minimum of these step lengths. \\
|
|---|
| 541 |
|
|---|
| 542 | \noindent
|
|---|
| 543 | Then, this minimum step length
|
|---|
| 544 | must be compared with the length determined by the geometry of the detectors
|
|---|
| 545 | and one has to select the minimum of the 'physics step length' and the
|
|---|
| 546 | 'geometrical step length' as the actual step length. \\
|
|---|
| 547 |
|
|---|
| 548 | \noindent
|
|---|
| 549 | This is the point where the MSC model comes into the game. All the
|
|---|
| 550 | physics processes use the true path length $t$ to sample the interaction point,
|
|---|
| 551 | while the step limitation originated from the geometry is a
|
|---|
| 552 | geometrical path length $z$. The MSC algorithm transforms the 'physics step
|
|---|
| 553 | length' into a 'geometrical step length' before the comparison of the two
|
|---|
| 554 | lengths. This 't'\(\rightarrow\)'z' transformation can be called the
|
|---|
| 555 | inverse of the path length correction. \\
|
|---|
| 556 |
|
|---|
| 557 | \noindent
|
|---|
| 558 | After the actual step length has been determined and the particle relocation
|
|---|
| 559 | has been performed the MSC performs the transformation 'z'\(\rightarrow\)'t',
|
|---|
| 560 | because the energy loss and scattering computation need the true step length
|
|---|
| 561 | 't'. \\
|
|---|
| 562 |
|
|---|
| 563 | \noindent
|
|---|
| 564 | The scattering angle $\theta$ of the particle after the step of length 't' is
|
|---|
| 565 | sampled according to the model function given in Eq.~\ref{msc.d} .
|
|---|
| 566 | The azimuthal angle $\phi$ is generated uniformly in the range $[0, 2 \pi]$. \\
|
|---|
| 567 |
|
|---|
| 568 | \noindent
|
|---|
| 569 | After the simulation of the scattering angle, the lateral displacement is
|
|---|
| 570 | computed using Eq.~\ref{msc.e1}. Then the correlation given by Eq.~\ref{msc.e2}
|
|---|
| 571 | is used to determine the direction of the lateral displacement.
|
|---|
| 572 | Before 'moving' the particle according to the displacement a check is performed
|
|---|
| 573 | to ensure that the relocation of the particle with the lateral displacement
|
|---|
| 574 | does not take the particle beyond the volume boundary.
|
|---|
| 575 |
|
|---|
| 576 | \subsection{Step Limitation Algorithm}
|
|---|
| 577 |
|
|---|
| 578 | In Geant4 the boundary crossing is treated by the transportation process.
|
|---|
| 579 | The transportation ensures that the
|
|---|
| 580 | particle does not penetrate in a new volume without stopping at the boundary,
|
|---|
| 581 | it restricts the step size when the particle leaves a volume. However,
|
|---|
| 582 | this step restriction can be rather weak in big volumes and this fact
|
|---|
| 583 | can result a not very good angular distribution after the volume.
|
|---|
| 584 | At the same time, there is no similar
|
|---|
| 585 | step limitation when a particle enters a volume and this fact does not allow
|
|---|
| 586 | a good backscattering simulation for low energy particles. Low energy particles
|
|---|
| 587 | penetrate too deeply into the volume in the first step and then - because
|
|---|
| 588 | of energy loss - they are not able to reach again the boundary in backward
|
|---|
| 589 | direction.\\
|
|---|
| 590 |
|
|---|
| 591 | \noindent
|
|---|
| 592 | A very simple step limitation algorithm has been implemented in the
|
|---|
| 593 | MSC code to cure this situation. At the start of a track or after
|
|---|
| 594 | entering in a new volume, the algorithm restricts
|
|---|
| 595 | the step size to a value
|
|---|
| 596 | \begin{equation}
|
|---|
| 597 | f_r \cdot max\{r,\lambda_1\}
|
|---|
| 598 | \end{equation}
|
|---|
| 599 | where $r$ is the range of the particle, $f_r$ is a parameter $\in [0, 1]$,
|
|---|
| 600 | taking the max of $r$ and $\lambda_1$ is an empirical choice.The value of $f_r$
|
|---|
| 601 | is constant for low energy particles while for particles with $\lambda_1 > \lambda_{lim}$
|
|---|
| 602 | an effective value is used given by the scaling equation
|
|---|
| 603 | \begin{equation}
|
|---|
| 604 | f_{reff} = f_r \cdot \left[ 1 - sc + sc * \frac{\lambda_1}{\lambda_{lim}} \right]
|
|---|
| 605 | \end{equation}
|
|---|
| 606 | ( The numerical values $sc = 0.25$ and $\lambda_{lim} = 1 \hspace{2mm} mm$ are used in the equation.)
|
|---|
| 607 | In order not to
|
|---|
| 608 | use very small - unphysical - step sizes a lower limit is given for the step
|
|---|
| 609 | size as
|
|---|
| 610 | \begin{equation}
|
|---|
| 611 | tlimitmin = max\left[ \frac{\lambda_1}{nstepmax}, \lambda_{elastic} \right]
|
|---|
| 612 | \end{equation}
|
|---|
| 613 | with $nstepmax = 25$ and $\lambda_{elastic}$ is the elastic mean free path
|
|---|
| 614 | of the particle (see later).\\
|
|---|
| 615 |
|
|---|
| 616 | \noindent
|
|---|
| 617 | It can be easily seen that this kind of step limitation poses a real constraint
|
|---|
| 618 | only for low energy particles. \\
|
|---|
| 619 |
|
|---|
| 620 | \noindent
|
|---|
| 621 | In order to prevent a particle from crossing
|
|---|
| 622 | a volume in just one step, an additional limitation is imposed:
|
|---|
| 623 | after entering a volume
|
|---|
| 624 | the step size cannot be bigger than
|
|---|
| 625 | \begin{equation}
|
|---|
| 626 | \frac {d_{geom}}{f_g}
|
|---|
| 627 | \end{equation}
|
|---|
| 628 | where $d_{geom}$ is the distance to the next boundary (in the direction
|
|---|
| 629 | of the particle) and $f_g$ is a constant parameter. A similar restriction
|
|---|
| 630 | at the start of a track is
|
|---|
| 631 | \begin{equation}
|
|---|
| 632 | \frac {2 d_{geom}}{f_g}
|
|---|
| 633 | \end{equation}
|
|---|
| 634 |
|
|---|
| 635 | \noindent
|
|---|
| 636 | The choice of the parameters $f_r$ and $f_g$ is also
|
|---|
| 637 | related to performance. By default $f_r = 0.02$ and $f_g = 2.5$
|
|---|
| 638 | are used, but these may
|
|---|
| 639 | be set to any other value in a simple way. One can get an
|
|---|
| 640 | approximate simulation of the backscattering with the default value, while
|
|---|
| 641 | if a better backscattering simulation is needed it is possible to get it
|
|---|
| 642 | using a smaller value for $f_r$. However, this model is very simple and
|
|---|
| 643 | it can only approximately reproduce the backscattering data.
|
|---|
| 644 |
|
|---|
| 645 | \subsection{Boundary Crossing Algorithm}
|
|---|
| 646 |
|
|---|
| 647 | A special stepping algorithm has been implemented recently (Autumn 2006)
|
|---|
| 648 | in order to improve the simulation around interfaces.
|
|---|
| 649 | This algorithm does not allow 'big' last steps in a volume and 'big' first steps
|
|---|
| 650 | in the next volume. The step length of these steps around a boundary crossing
|
|---|
| 651 | can not be bigger than the mean free path of the elastic scattering
|
|---|
| 652 | of the particle in the given volume (material). After these small steps the particle
|
|---|
| 653 | scattered according to a single scattering law (i.e. there is no multiple scattering
|
|---|
| 654 | very close to the boundary or at the boundary). \\
|
|---|
| 655 |
|
|---|
| 656 | \noindent
|
|---|
| 657 | The key parameter of the algorithm is the variable called $skin$. The algorithm is
|
|---|
| 658 | not active for $skin \leq 0$, while for $skin > 0$ it is active in layers
|
|---|
| 659 | of thickness $skin \cdot \lambda_{elastic}$ before boundary crossing
|
|---|
| 660 | and of thickness $(skin-1) \cdot \lambda_{elastic}$ after
|
|---|
| 661 | boundary crossing (for $skin=1$ there is only one small step just before
|
|---|
| 662 | the boundary). In this active area the particle
|
|---|
| 663 | performs steps of length $\lambda_{elastic}$ (or smaller if the particle reaches the
|
|---|
| 664 | boundary traversing a smaller distance than this value). \\
|
|---|
| 665 |
|
|---|
| 666 | \noindent
|
|---|
| 667 | The scattering at the end of a small step is single or
|
|---|
| 668 | plural and for these small steps there are no path length correction
|
|---|
| 669 | and lateral displacement computation. In other words the program works in this
|
|---|
| 670 | thin layer in 'microscopic mode'. \\
|
|---|
| 671 |
|
|---|
| 672 | \noindent
|
|---|
| 673 | The elastic mean free path can be estimated as
|
|---|
| 674 | \begin{equation}
|
|---|
| 675 | \lambda_{elastic} = \lambda_1 \cdot rat \left( T_{kin} \right)
|
|---|
| 676 | \end{equation}
|
|---|
| 677 | where $rat(T_{kin})$ a simple empirical function computed from the elastic and
|
|---|
| 678 | first transport cross section values of Mayol and Salvat \cite{msc.mayol}
|
|---|
| 679 |
|
|---|
| 680 | \begin{equation}
|
|---|
| 681 | rat \left( T_{kin} \right) = \frac{0.001 (MeV)^2}
|
|---|
| 682 | { T_{kin} \left(T_{kin} + 10 MeV \right)}
|
|---|
| 683 | \end{equation}
|
|---|
| 684 | $T_{kin}$ is the kinetic energy of the particle. \\
|
|---|
| 685 |
|
|---|
| 686 | \noindent
|
|---|
| 687 | At the end of a small step the number of scatterings is sampled according to
|
|---|
| 688 | the Poisson's distribution with a mean value $t/\lambda_{elastic}$ and in the
|
|---|
| 689 | case of plural scattering the final scattering angle is computed by summing
|
|---|
| 690 | the contributions of the individual scatterings. \\
|
|---|
| 691 | \noindent
|
|---|
| 692 | The single scattering is determined by the distribution
|
|---|
| 693 | \begin{equation}
|
|---|
| 694 | g(u) = C \frac{1} {(2 a + 1 -u)^2}
|
|---|
| 695 | \end{equation}
|
|---|
| 696 | where $u = \cos(\theta)$ , $a$ is the screening parameter,
|
|---|
| 697 | $C$ is a normalization constant. The form of the screening parameter is
|
|---|
| 698 | the same as in the single scattering (see there).
|
|---|
| 699 |
|
|---|
| 700 |
|
|---|
| 701 | \subsection{Implementation Details}
|
|---|
| 702 |
|
|---|
| 703 | The concrete implementation of described algorithms of simulation is
|
|---|
| 704 | provided in {\it G4UrbanMscModel2, G4UrbanMscModel90}.
|
|---|
| 705 | Because multiple scattering is very similar for different particles the base
|
|---|
| 706 | class {\it G4VMultipleScattering} was created to collect and provide significant
|
|---|
| 707 | features of the calculations which are common to different particle types. \\
|
|---|
| 708 |
|
|---|
| 709 | \noindent
|
|---|
| 710 | In the {\tt AlongStepGetPhysicalInteractionLength} method the minimum step
|
|---|
| 711 | size due to the physics processes is compared with the step size constraints
|
|---|
| 712 | imposed by the transportation process and the geometry. In order to do this,
|
|---|
| 713 | the \mbox{'t' step $\rightarrow$ 'z' step} transformation must be performed.
|
|---|
| 714 | Therefore, the method should be invoked after the
|
|---|
| 715 | {\tt GetPhysicalInteractionLength} methods of other physics processes,
|
|---|
| 716 | but before the same method of the transportation process.
|
|---|
| 717 | The reason for this ordering is that the physics processes 'feel'
|
|---|
| 718 | the true path length $t$ traveled by the particle, while the transportation
|
|---|
| 719 | process (geometry) uses the $z$ step length.\\
|
|---|
| 720 |
|
|---|
| 721 | \noindent
|
|---|
| 722 | At this point the program also checks whether the particle has entered a
|
|---|
| 723 | new volume. If it has, the particle steps cannot be bigger than
|
|---|
| 724 | $t_{lim} = f_r\hspace{2mm} max( r, \lambda )$. This step limitation is
|
|---|
| 725 | governed by the physics, because $t_{lim}$ depends on the particle energy
|
|---|
| 726 | and the material. \\
|
|---|
| 727 |
|
|---|
| 728 | \noindent
|
|---|
| 729 | The {\tt PostStepGetPhysicalInteractionLength} method of the multiple
|
|---|
| 730 | scattering process simply sets the force flag to 'Forced' in order to
|
|---|
| 731 | ensure that {\tt PostStepDoIt} is called at every step. It also returns a
|
|---|
| 732 | large value for the interaction length so that there is no step limitation
|
|---|
| 733 | at this level. \\
|
|---|
| 734 |
|
|---|
| 735 | \noindent
|
|---|
| 736 | The {\tt AlongStepDoIt} function of the process performs the inverse,\linebreak
|
|---|
| 737 | \mbox{'z' $\rightarrow$ 't'} transformation. This function should be
|
|---|
| 738 | invoked after the \linebreak {\tt AlongStepDoIt} method of the transportation
|
|---|
| 739 | process, that is, after the particle relocation is determined by the
|
|---|
| 740 | geometrical step length, but before applying any other physics
|
|---|
| 741 | {\tt AlongStepDoIt}. \\
|
|---|
| 742 |
|
|---|
| 743 | \noindent
|
|---|
| 744 | The {\tt PostStepDoIt} method of the process samples the scattering angle
|
|---|
| 745 | and performs the lateral displacement when the particle is not near a boundary.
|
|---|
| 746 |
|
|---|
| 747 | Default MSC parameter values optimized per particle type are shown in Table \ref{msc.t}.
|
|---|
| 748 | Note, that there is three types of step limitation by multiple scattering process:
|
|---|
| 749 | \begin{itemize}
|
|---|
| 750 | \item
|
|---|
| 751 | {\tt Minimal} - only $f_r$ parameter is used, was used for g4 7.1 release;
|
|---|
| 752 | \item
|
|---|
| 753 | {\tt UseSafety} or $skin=0$ - uses particle range and
|
|---|
| 754 | geometrical safety;
|
|---|
| 755 | \item
|
|---|
| 756 | {\tt UseDistanceToBoundary} - uses particle range, geometrical safety and linear distance to
|
|---|
| 757 | geometrical boundary.
|
|---|
| 758 | \end{itemize}
|
|---|
| 759 | \begin{table}[hbt]
|
|---|
| 760 | \begin{centering}
|
|---|
| 761 | \begin{tabular}{|c|c|c|c|}
|
|---|
| 762 | \hline
|
|---|
| 763 | particle & $e^+$, $e^-$ & {\it muons, hadrons} & {\it ions}\\ \hline
|
|---|
| 764 | {\it StepLimitType} & {\it fUseSafety} & {\it fMinimal} & {\it fMinimal}\\ \hline
|
|---|
| 765 | {\it skin} & 0 & 0 & 0 \\ \hline
|
|---|
| 766 | $f_r$ & 0.04 & 0.2 & 0.2\\ \hline
|
|---|
| 767 | $f_g$ & 2.5 & 0.1 & 0.1\\ \hline
|
|---|
| 768 | {\it LateralDisplacement} & {\it true} & {\it true}& {\it false}\\ \hline
|
|---|
| 769 | \end{tabular}
|
|---|
| 770 | \caption{The default values of parameters for different particle type.}
|
|---|
| 771 | \label{msc.t}
|
|---|
| 772 | \end{centering}
|
|---|
| 773 | \end{table}
|
|---|
| 774 | The parameters of the model can be changed via public functions of the base
|
|---|
| 775 | class {\it G4VMultipleSacttering}. They can be changed for all
|
|---|
| 776 | multiple scattering processes simultaneously via {\it G4EmProcessOptions} class or
|
|---|
| 777 | via Geant4 UI commands. The following commands are available:\\
|
|---|
| 778 | \\
|
|---|
| 779 | {\it /process/msc/StepLimit UseDistanceToBoundary\\
|
|---|
| 780 | /process/msc/LateralDisplacement false\\
|
|---|
| 781 | /process/msc/RangeFactor 0.02\\
|
|---|
| 782 | /process/msc/GeomFactor 2.5\\
|
|---|
| 783 | /process/msc/Skin 2}
|
|---|
| 784 | \\
|
|---|
| 785 |
|
|---|
| 786 |
|
|---|
| 787 | \subsection{Status of this document}
|
|---|
| 788 | 09.10.98 created by L. Urb\'an. \\
|
|---|
| 789 | 15.11.01 major revision by L. Urb\'an.\\
|
|---|
| 790 | 18.04.02 updated by L. Urb\'an. \\
|
|---|
| 791 | 25.04.02 re-worded by D.H. Wright \\
|
|---|
| 792 | 07.06.02 major revision by L. Urb\'an. \\
|
|---|
| 793 | 18.11.02 updated by L. Urb\'an, now it describes the new angle distribution. \\
|
|---|
| 794 | 05.12.02 grammar check and parts re-written by D.H. Wright \\
|
|---|
| 795 | 13.11.03 revision by L. Urb\'an. \\
|
|---|
| 796 | 01.12.03 revision by V. Ivanchenko. \\
|
|---|
| 797 | 17.05.04 revision by L.Urb\'an. \\
|
|---|
| 798 | 01.12.04 updated by L.Urb\'an. \\
|
|---|
| 799 | 18.03.05 sampling z + mistyping corrections (mma) \\
|
|---|
| 800 | 22.06.05 grammar, spelling check by D.H. Wright \\
|
|---|
| 801 | 12.12.05 revised by L. Urb\'an, according to Geant4 V8.0 \\
|
|---|
| 802 | 14.12.05 updated implementation Details (mma) \\
|
|---|
| 803 | 08.06.06 revised by L. Urb\'an, according to Geant4 V8.1 \\
|
|---|
| 804 | 25.11.06 revised by L. Urb\'an, according to Geant4 V8.2 \\
|
|---|
| 805 | 29.03.07 revised by L. Urb\'an, for Geant4 V8.3 \\
|
|---|
| 806 | 13.06.07 modified introduction (mma) \\
|
|---|
| 807 | 17.06.07 explain effective $F_R$ (L. Urb\'an) \\
|
|---|
| 808 | 25.06.07 update description of options by V. Ivanchenko \\
|
|---|
| 809 | 05.12.07 revised by L. Urb\'an, for Geant4 V9.1 \\
|
|---|
| 810 | 08.12.08 revised by L. Urb\'an, for Geant4 V9.2 \\
|
|---|
| 811 | 11.12.08 minor revision by V. Ivanchenko \\
|
|---|
| 812 | 11.12.09 minor revision by V. Ivanchenko, for Geant4 v9.3 \\
|
|---|
| 813 |
|
|---|
| 814 | \begin{latexonly}
|
|---|
| 815 |
|
|---|
| 816 | \begin{thebibliography}{99}
|
|---|
| 817 |
|
|---|
| 818 | \bibitem{msc.urban} L.~Urban, A multiple scattering model,
|
|---|
| 819 | {\em CERN-OPEN-2006-077, Dec 2006. 18 pp.}
|
|---|
| 820 | \bibitem{msc.moliere} G.Z.~Moli\`ere
|
|---|
| 821 | {\em Z. Naturforsch. 3a (1948) 78. }
|
|---|
| 822 | \bibitem{msc.lewis} H.W.~Lewis.
|
|---|
| 823 | {\em Phys. Rev. 78 (1950) 526. }
|
|---|
| 824 | \bibitem{msc.goudsmit}S.~Goudsmit and J.L.~Saunderson.
|
|---|
| 825 | {\em Phys. Rev. 57 (1940) 24. }
|
|---|
| 826 | \bibitem{msc.fernandez}J.M.~Fernandez-Varea et al.
|
|---|
| 827 | {\em NIM B73 (1993) 447.}
|
|---|
| 828 | \bibitem{msc.kawrakow} I.~Kawrakow and A.F.~Bielajew
|
|---|
| 829 | {\em NIM B 142 (1998) 253. }
|
|---|
| 830 | \bibitem{msc.liljequist1} D.~Liljequist and M.~Ismail.
|
|---|
| 831 | {\em J.Appl.Phys. 62 (1987) 342. }
|
|---|
| 832 | \bibitem{msc.liljequist2} D.~Liljequist et al.
|
|---|
| 833 | {\em J.Appl.Phys. 68 (1990) 3061. }
|
|---|
| 834 | \bibitem{msc.mayol} R.~Mayol and F.~Salvat
|
|---|
| 835 | {\em At.Data and Nucl.Data Tables 65 (1997) 55.}.
|
|---|
| 836 | \bibitem{msc.highland} V.L.~Highland
|
|---|
| 837 | {\em NIM 129 (1975) 497. }
|
|---|
| 838 | \bibitem{msc.lynch} G.R.~Lynch and O.I.~Dahl
|
|---|
| 839 | {\em NIM B58 (1991) 6. }
|
|---|
| 840 | \bibitem{msc.shen} G.~Shen et al.
|
|---|
| 841 | {\em Phys. Rev. D 20 (1979) 1584.}
|
|---|
| 842 | \bibitem{msc.attwood} D.~Attwood et al.
|
|---|
| 843 | {\em NIM B 251 (2006) 41.}
|
|---|
| 844 | \end{thebibliography}
|
|---|
| 845 |
|
|---|
| 846 | \end{latexonly}
|
|---|
| 847 |
|
|---|
| 848 | \begin{htmlonly}
|
|---|
| 849 |
|
|---|
| 850 | \subsection{Bibliography}
|
|---|
| 851 |
|
|---|
| 852 | \begin{enumerate}
|
|---|
| 853 |
|
|---|
| 854 | \item L.~Urban, A multiple scattering model,
|
|---|
| 855 | {\em CERN-OPEN-2006-077, Dec 2006. 18 pp.}
|
|---|
| 856 | \item G. Z. Moli\`ere
|
|---|
| 857 | {\em Z. Naturforsch. 3a (1948) 78. }
|
|---|
| 858 | \item H. W. Lewis
|
|---|
| 859 | {\em Phys. Rev. 78 (1950) 526. }
|
|---|
| 860 | \item S. Goudsmit and J. L. Saunderson.
|
|---|
| 861 | {\em Phys. Rev. 57 (1940) 24. }
|
|---|
| 862 | \item J. M. Fernandez-Varea et al.
|
|---|
| 863 | {\em NIM B73 (1993) 447.}
|
|---|
| 864 | \item I. Kawrakow and Alex F. Bielajew
|
|---|
| 865 | {\em NIM B 142 (1998) 253. }
|
|---|
| 866 | \item D. Liljequist and M. Ismail.
|
|---|
| 867 | {\em J.Appl.Phys. 62 (1987) 342. }
|
|---|
| 868 | \item D. Liljequist et al.
|
|---|
| 869 | {\em J.Appl.Phys. 68 (1990) 3061. }
|
|---|
| 870 | \item R. Mayol and F. Salvat
|
|---|
| 871 | {\em At.Data and Nucl.Data Tables 65 (1997) 55.}.
|
|---|
| 872 | \item V.L. Highland
|
|---|
| 873 | {\em NIM 129 (1975) 497. }
|
|---|
| 874 | \item G.R. Lynch and O.I. Dahl
|
|---|
| 875 | {\em NIM B58 (1991) 6. }
|
|---|
| 876 | \item{msc.shen} G. Shen et al.
|
|---|
| 877 | {\em Phys. Rev. D 20 (1979) 1584.}
|
|---|
| 878 | \item{msc.attwood} D. Attwood et al.
|
|---|
| 879 | {\em NIM B 251 (2006) 41.}
|
|---|
| 880 | \end{enumerate}
|
|---|
| 881 |
|
|---|
| 882 | \end{htmlonly}
|
|---|
| 883 |
|
|---|
| 884 |
|
|---|
| 885 |
|
|---|