\section[Photoabsorption ionization model]{Photoabsorption Ionization Model} \label{secpai} \subsection{Cross Section for Ionizing Collisions} The Photoabsorption Ionization (PAI) model describes the ionization energy loss of a relativistic charged particle in matter. For such a particle, the differential cross section $d\sigma_i/d\omega$ for ionizing collisions with energy transfer $\omega$ can be expressed most generally by the following equations \cite{pai.asosk}: \begin{eqnarray} \label{PAI1} \frac{d\sigma_i}{d\omega} & = & \frac{2\pi Ze^4}{mv^2} \left\{ \frac{f(\omega)}{\omega\left|\varepsilon(\omega)\right|^2} \left[ \ln\frac{2mv^2}{\omega\left|1-\beta^2\varepsilon\right|} - \right. \right. \nonumber \\ && \left. \left. - \frac{\varepsilon_1 - \beta^2\left|\varepsilon\right|^2}{\varepsilon_2} \arg(1-\beta^2\varepsilon^*) \right] + \frac{\tilde{F}(\omega)}{\omega^2} \right\} , \end{eqnarray} \[ \tilde{F}(\omega) = \int_{0}^{\omega}\frac{f(\omega')} {\left|\varepsilon(\omega')\right|^2}d\omega' , \] \[ f(\omega) = \frac{m\omega\varepsilon_2(\omega)}{2\pi^2ZN\hbar^2} . \] Here $m$ and $e$ are the electron mass and charge, $\hbar$ is Planck's constant, $\beta = v/c$ is the ratio of the particle's velocity $v$ to the speed of light $c$, $Z$ is the effective atomic number, $N$ is the number of atoms (or molecules) per unit volume, and $\varepsilon = \varepsilon_1 + i\varepsilon_2$ is the complex dielectric constant of the medium. In an isotropic non-magnetic medium the dielectric constant can be expressed in terms of a complex index of refraction, $n(\omega) = n_1 + in_2$, $\varepsilon(\omega) = n^2(\omega)$. In the energy range above the first ionization potential $I_1$ for all cases of practical interest, and in particular for all gases, $n_1 \sim 1$. Therefore the imaginary part of the dielectric constant can be expressed in terms of the photoabsorption cross section $\sigma_{\gamma}(\omega)$: \[ \varepsilon_2(\omega) = 2n_1n_2 \sim 2n_2 = \frac{N\hbar c}{\omega} \sigma_{\gamma}(\omega) . \] The real part of the dielectric constant is calculated in turn from the dispersion relation \[ \varepsilon_1(\omega) - 1 = \frac{2N\hbar c}{\pi}V.p.\int_{0}^{\infty} \frac{\sigma_{\gamma}(\omega')}{\omega'^2 - \omega^2}d\omega' , \] where the integral of the pole expression is considered in terms of the principal value. In practice it is convenient to calculate the contribution from the continuous part of the spectrum only. In this case the normalized photoabsorption cross section \[ \tilde{\sigma}_{\gamma}(\omega) = \frac{2\pi^2\hbar e^2Z}{mc} \sigma_{\gamma}(\omega) \left[ \int_{I_1}^{\omega_{max}}\sigma_{\gamma}(\omega')d\omega' \right]^{-1}, \ \omega_{max} \sim 100 \ keV \] is used, which satisfies the quantum mechanical sum rule \cite{pai.fano}: \[ \int_{I_1}^{\omega_{max}}\tilde{\sigma}_{\gamma}(\omega')d\omega' = \frac{2\pi^2\hbar e^2Z}{mc} . \] \noindent The differential cross section for ionizing collisions is expressed by the photoabsorption cross section in the continuous spectrum region: \begin{eqnarray} \frac{d\sigma_i}{d\omega} & = & \frac{\alpha}{\pi\beta^2} \left\{ \frac{\tilde{\sigma}_{\gamma}(\omega)} {\omega\left|\varepsilon(\omega)\right|^2} \left[ \ln\frac{2mv^2}{\omega\left|1-\beta^2\varepsilon\right|} - \right. \right. \nonumber \\ & & \left. \left. - \frac{\varepsilon_1-\beta^2\left|\varepsilon\right|^2}{\varepsilon_2} \arg(1-\beta^2\varepsilon^*) \right] + \frac{1}{\omega^2}\int_{I_1}^{\omega}\frac{\tilde{\sigma}_{\gamma}(\omega')} {\left|\varepsilon(\omega')\right|^2}d\omega' \right\} , \end{eqnarray} \[ \varepsilon_2(\omega) = \frac{N\hbar c}{\omega} \tilde{\sigma}_{\gamma}(\omega) , \] \[ \varepsilon_1(\omega) - 1 = \frac{2N\hbar c}{\pi}V.p.\int_{I_1}^{\omega_{max}} \frac{\tilde{\sigma}_{\gamma}(\omega')}{\omega'^2 - \omega^2}d\omega' . \] \\ \noindent For practical calculations using Eq.~\ref{PAI1} it is convenient to represent the photoabsorption cross section as a polynomial in $\omega^{-1}$ as was proposed in \cite{sandia}: \[ \sigma_{\gamma}(\omega) = \sum_{k=1}^{4}a_{k}^{(i)}\omega^{-k} , \] where the coefficients, $a_{k}^{(i)}$ result from a separate least-squares fit to experimental data in each energy interval $i$. As a rule the interval borders are equal to the corresponding photoabsorption edges. The dielectric constant can now be calculated analytically with elementary functions for all $\omega$, except near the photoabsorption edges where there are breaks in the photoabsorption cross section and the integral for the real part is not defined in the sense of the principal value. \\ \noindent The third term in Eq. (\ref{PAI1}), which can only be integrated numerically, results in a complex calculation of $d\sigma_i/d\omega$. However, this term is dominant for energy transfers $\omega > 10\ keV$, where the function $\left|\varepsilon(\omega)\right|^2 \sim 1$. This is clear from physical reasons, because the third term represents the Rutherford cross section on atomic electrons which can be considered as quasifree for a given energy transfer \cite{allis}. In addition, for high energy transfers, $\varepsilon(\omega) = 1 - \omega_{p}^{2}/\omega^2 \sim 1$, where $\omega_{p}$ is the plasma energy of the material. Therefore the factor $\left|\varepsilon(\omega)\right|^{-2}$ can be removed from under the integral and the differential cross section of ionizing collisions can be expressed as: \begin{eqnarray} \frac{d\sigma_i}{d\omega} & = &\frac{\alpha} {\pi\beta^2\left|\varepsilon(\omega)\right|^2} \left\{ \frac{\tilde{\sigma}_{\gamma}(\omega)}{\omega} \left[ \ln\frac{2mv^2}{\omega\left|1-\beta^2\varepsilon\right|} - \right. \right. \nonumber \\ & & \left. \left. - \frac{\varepsilon_1-\beta^2\left|\varepsilon\right|^2}{\varepsilon_2} \arg(1-\beta^2\varepsilon^*) \right] + \frac{1}{\omega^2}\int_{I_1}^{\omega}\tilde{\sigma}_{\gamma}(\omega')d\omega' \right\} . \end{eqnarray} This is especially simple in gases when $\left|\varepsilon(\omega)\right|^{-2} \sim 1$ for all $\omega > I_1$ \cite{allis}. \subsection{Energy Loss Simulation} For a given track length the number of ionizing collisions is simulated by a Poisson distribution whose mean is proportional to the total cross section of ionizing collisions: \[ \sigma_i = \int_{I_1}^{\omega_{max}}\frac{d\sigma(\omega')}{d\omega'}d\omega' . \] The energy transfer in each collision is simulated according to a distribution proportional to \[ \sigma_i(>\omega) = \int_{\omega}^{\omega_{max}} \frac{d\sigma(\omega')}{d\omega'}d\omega' . \] The sum of the energy transfers is equal to the energy loss. PAI ionisation is implemented according to the model approach (class G4PAIModel) allowing a user to select specific models in different regions. Here is an example physics list: \begin{verbatim} const G4RegionStore* theRegionStore = G4RegionStore::GetInstance(); G4Region* gas = theRegionStore->GetRegion("VertexDetector"); ... if (particleName == "e-") { G4eIonisation* eion = new G4eIonisation(); G4PAIModel* pai = new G4PAIModel(particle, "PAIModel"); // set energy limits where 'pai' is active pai->SetLowEnergyLimit(0.1*keV); pai->SetHighEnergyLimit(100.0*TeV); // here 0 is the highest priority in region 'gas' eion->AddEmModel(0,pai,pai,gas); pmanager->AddProcess(eion,-1, 2, 2); pmanager->AddProcess(new G4MultipleScattering, -1, 1,1); pmanager->AddProcess(new G4eBremsstrahlung,-1,1,3); } \end{verbatim} It shows how to select the G4PAIModel to be the preferred ionisation model for electrons in a G4Region named VertexDetector. The first argument in AddEmModel is 0 which means highest priority. The class G4PAIPhotonModel generates both $\delta$-electrons and photons as secondaries and can be used for more detailed descriptions of ionisation space distribution around the particle trajectory. \subsection{Status of this document} 01.12.05 expanded discussion by V. Grichine \\ 08.05.02 re-written by D.H. Wright \\ 16.11.98 created by V. Grichine \\ \begin{latexonly} \begin{thebibliography}{99} \bibitem{pai.asosk} Asoskov V.S., Chechin V.A., Grichine V.M. at el, {Lebedev Institute annual report, v. 140, p. 3} (1982) \bibitem{pai.fano} Fano U., and Cooper J.W. {Rev.Mod.Phys., v. 40, p. 441} (1968) \bibitem{sandia} Biggs F., and Lighthill R., {Preprint Sandia Laboratory, SAND 87-0070} (1990) \bibitem{allis} Allison W.W.M., and Cobb J. {Ann.Rev.Nucl.Part.Sci., v.30,p.253} (1980) \end{thebibliography} \end{latexonly} \begin{htmlonly} \subsection{Bibliography} \begin{enumerate} \item Asoskov V.S., Chechin V.A., Grichine V.M. at el, {Lebedev Institute annual report, v. 140, p. 3} (1982) \item Fano U., and Cooper J.W. {Rev.Mod.Phys., v. 40, p. 441} (1968) \item Biggs F., and Lighthill R., {Preprint Sandia Laboratory, SAND 87-0070} (1990) \item Allison W.W.M., and Cobb J. {Ann.Rev.Nucl.Part.Sci., v.30,p.253} (1980) \end{enumerate} \end{htmlonly}