| 1 | \section[Photoabsorption ionization model]{Photoabsorption Ionization Model}
|
|---|
| 2 | \label{secpai}
|
|---|
| 3 |
|
|---|
| 4 | \subsection{Cross Section for Ionizing Collisions}
|
|---|
| 5 |
|
|---|
| 6 | The Photoabsorption Ionization (PAI) model describes the ionization energy
|
|---|
| 7 | loss of a relativistic charged particle in matter. For such a particle, the
|
|---|
| 8 | differential cross section $d\sigma_i/d\omega$ for ionizing collisions with
|
|---|
| 9 | energy transfer $\omega$ can be expressed most generally by the following
|
|---|
| 10 | equations \cite{pai.asosk}:
|
|---|
| 11 |
|
|---|
| 12 | \begin{eqnarray}
|
|---|
| 13 | \label{PAI1}
|
|---|
| 14 | \frac{d\sigma_i}{d\omega}
|
|---|
| 15 | & = & \frac{2\pi Ze^4}{mv^2}
|
|---|
| 16 | \left\{
|
|---|
| 17 | \frac{f(\omega)}{\omega\left|\varepsilon(\omega)\right|^2}
|
|---|
| 18 | \left[
|
|---|
| 19 | \ln\frac{2mv^2}{\omega\left|1-\beta^2\varepsilon\right|} -
|
|---|
| 20 | \right. \right. \nonumber \\
|
|---|
| 21 | && \left. \left.
|
|---|
| 22 | - \frac{\varepsilon_1 - \beta^2\left|\varepsilon\right|^2}{\varepsilon_2}
|
|---|
| 23 | \arg(1-\beta^2\varepsilon^*)
|
|---|
| 24 | \right] +
|
|---|
| 25 | \frac{\tilde{F}(\omega)}{\omega^2}
|
|---|
| 26 | \right\} ,
|
|---|
| 27 | \end{eqnarray}
|
|---|
| 28 |
|
|---|
| 29 | \[
|
|---|
| 30 | \tilde{F}(\omega) = \int_{0}^{\omega}\frac{f(\omega')}
|
|---|
| 31 | {\left|\varepsilon(\omega')\right|^2}d\omega' ,
|
|---|
| 32 | \]
|
|---|
| 33 |
|
|---|
| 34 | \[
|
|---|
| 35 | f(\omega) = \frac{m\omega\varepsilon_2(\omega)}{2\pi^2ZN\hbar^2} .
|
|---|
| 36 | \]
|
|---|
| 37 | Here $m$ and $e$ are the electron mass and charge, $\hbar$ is Planck's
|
|---|
| 38 | constant, $\beta = v/c$ is the ratio of the particle's velocity $v$ to
|
|---|
| 39 | the speed of light $c$, $Z$ is the effective atomic number, $N$ is the
|
|---|
| 40 | number of atoms (or molecules) per unit volume, and
|
|---|
| 41 | $\varepsilon = \varepsilon_1 + i\varepsilon_2$ is the complex dielectric
|
|---|
| 42 | constant of the medium. In an isotropic non-magnetic medium the dielectric
|
|---|
| 43 | constant can be expressed in terms of a complex index of refraction,
|
|---|
| 44 | $n(\omega) = n_1 + in_2$, $\varepsilon(\omega) = n^2(\omega)$. In the
|
|---|
| 45 | energy range above the first ionization potential $I_1$ for all cases of
|
|---|
| 46 | practical interest, and in particular for all gases, $n_1 \sim 1$.
|
|---|
| 47 | Therefore the imaginary part of the dielectric constant can be expressed in
|
|---|
| 48 | terms of the photoabsorption cross section $\sigma_{\gamma}(\omega)$:
|
|---|
| 49 |
|
|---|
| 50 | \[
|
|---|
| 51 | \varepsilon_2(\omega) = 2n_1n_2 \sim 2n_2 = \frac{N\hbar c}{\omega}
|
|---|
| 52 | \sigma_{\gamma}(\omega) .
|
|---|
| 53 | \]
|
|---|
| 54 | The real part of the dielectric constant is calculated in turn from the
|
|---|
| 55 | dispersion relation
|
|---|
| 56 |
|
|---|
| 57 | \[
|
|---|
| 58 | \varepsilon_1(\omega) - 1 = \frac{2N\hbar c}{\pi}V.p.\int_{0}^{\infty}
|
|---|
| 59 | \frac{\sigma_{\gamma}(\omega')}{\omega'^2 - \omega^2}d\omega' ,
|
|---|
| 60 | \]
|
|---|
| 61 | where the integral of the pole expression is considered in terms of the
|
|---|
| 62 | principal value. In practice it is convenient to calculate the contribution
|
|---|
| 63 | from the continuous part of the spectrum only. In this case the normalized
|
|---|
| 64 | photoabsorption cross section
|
|---|
| 65 |
|
|---|
| 66 | \[
|
|---|
| 67 | \tilde{\sigma}_{\gamma}(\omega) = \frac{2\pi^2\hbar e^2Z}{mc}
|
|---|
| 68 | \sigma_{\gamma}(\omega)
|
|---|
| 69 | \left[
|
|---|
| 70 | \int_{I_1}^{\omega_{max}}\sigma_{\gamma}(\omega')d\omega'
|
|---|
| 71 | \right]^{-1}, \ \omega_{max} \sim 100 \ keV
|
|---|
| 72 | \]
|
|---|
| 73 | is used, which satisfies the quantum mechanical sum rule \cite{pai.fano}:
|
|---|
| 74 |
|
|---|
| 75 | \[
|
|---|
| 76 | \int_{I_1}^{\omega_{max}}\tilde{\sigma}_{\gamma}(\omega')d\omega' =
|
|---|
| 77 | \frac{2\pi^2\hbar e^2Z}{mc} .
|
|---|
| 78 | \]
|
|---|
| 79 |
|
|---|
| 80 | \noindent
|
|---|
| 81 | The differential cross section for ionizing collisions is expressed by the
|
|---|
| 82 | photoabsorption cross section in the continuous spectrum region:
|
|---|
| 83 |
|
|---|
| 84 | \begin{eqnarray}
|
|---|
| 85 | \frac{d\sigma_i}{d\omega}
|
|---|
| 86 | & = & \frac{\alpha}{\pi\beta^2}
|
|---|
| 87 | \left\{
|
|---|
| 88 | \frac{\tilde{\sigma}_{\gamma}(\omega)}
|
|---|
| 89 | {\omega\left|\varepsilon(\omega)\right|^2}
|
|---|
| 90 | \left[
|
|---|
| 91 | \ln\frac{2mv^2}{\omega\left|1-\beta^2\varepsilon\right|} -
|
|---|
| 92 | \right. \right. \nonumber \\
|
|---|
| 93 | & & \left. \left.
|
|---|
| 94 | - \frac{\varepsilon_1-\beta^2\left|\varepsilon\right|^2}{\varepsilon_2}
|
|---|
| 95 | \arg(1-\beta^2\varepsilon^*)
|
|---|
| 96 | \right]
|
|---|
| 97 | + \frac{1}{\omega^2}\int_{I_1}^{\omega}\frac{\tilde{\sigma}_{\gamma}(\omega')}
|
|---|
| 98 | {\left|\varepsilon(\omega')\right|^2}d\omega'
|
|---|
| 99 | \right\} ,
|
|---|
| 100 | \end{eqnarray}
|
|---|
| 101 |
|
|---|
| 102 | \[
|
|---|
| 103 | \varepsilon_2(\omega) = \frac{N\hbar c}{\omega}
|
|---|
| 104 | \tilde{\sigma}_{\gamma}(\omega) ,
|
|---|
| 105 | \]
|
|---|
| 106 |
|
|---|
| 107 | \[
|
|---|
| 108 | \varepsilon_1(\omega) - 1 = \frac{2N\hbar c}{\pi}V.p.\int_{I_1}^{\omega_{max}}
|
|---|
| 109 | \frac{\tilde{\sigma}_{\gamma}(\omega')}{\omega'^2 - \omega^2}d\omega' .
|
|---|
| 110 | \]
|
|---|
| 111 | \\
|
|---|
| 112 |
|
|---|
| 113 | \noindent
|
|---|
| 114 | For practical calculations using Eq.~\ref{PAI1} it is convenient to
|
|---|
| 115 | represent the photoabsorption cross section as a polynomial in $\omega^{-1}$
|
|---|
| 116 | as was proposed in \cite{sandia}:
|
|---|
| 117 |
|
|---|
| 118 | \[
|
|---|
| 119 | \sigma_{\gamma}(\omega) = \sum_{k=1}^{4}a_{k}^{(i)}\omega^{-k} ,
|
|---|
| 120 | \]
|
|---|
| 121 | where the coefficients, $a_{k}^{(i)}$ result from a separate least-squares
|
|---|
| 122 | fit to experimental data in each energy interval $i$. As a rule the
|
|---|
| 123 | interval borders are equal to the corresponding photoabsorption edges. The
|
|---|
| 124 | dielectric constant can now be calculated analytically with elementary
|
|---|
| 125 | functions for all $\omega$, except near the photoabsorption edges where
|
|---|
| 126 | there are breaks in the photoabsorption cross section and the integral for
|
|---|
| 127 | the real part is not defined in the sense of the principal value. \\
|
|---|
| 128 |
|
|---|
| 129 | \noindent
|
|---|
| 130 | The third term in Eq. (\ref{PAI1}), which can only be integrated
|
|---|
| 131 | numerically, results in a complex calculation of $d\sigma_i/d\omega$.
|
|---|
| 132 | However, this term is dominant for energy transfers $\omega > 10\ keV$,
|
|---|
| 133 | where the function $\left|\varepsilon(\omega)\right|^2 \sim 1$. This is
|
|---|
| 134 | clear from physical reasons, because the third term represents the
|
|---|
| 135 | Rutherford cross section on atomic electrons which can be considered as
|
|---|
| 136 | quasifree for a given energy transfer \cite{allis}. In addition, for high
|
|---|
| 137 | energy transfers,
|
|---|
| 138 | $\varepsilon(\omega) = 1 - \omega_{p}^{2}/\omega^2 \sim 1$,
|
|---|
| 139 | where $\omega_{p}$ is the plasma energy of the material. Therefore the
|
|---|
| 140 | factor $\left|\varepsilon(\omega)\right|^{-2}$ can be removed from under the
|
|---|
| 141 | integral and the differential cross section of ionizing collisions can be
|
|---|
| 142 | expressed as:
|
|---|
| 143 |
|
|---|
| 144 | \begin{eqnarray}
|
|---|
| 145 | \frac{d\sigma_i}{d\omega}
|
|---|
| 146 | & = &\frac{\alpha}
|
|---|
| 147 | {\pi\beta^2\left|\varepsilon(\omega)\right|^2}
|
|---|
| 148 | \left\{
|
|---|
| 149 | \frac{\tilde{\sigma}_{\gamma}(\omega)}{\omega}
|
|---|
| 150 | \left[
|
|---|
| 151 | \ln\frac{2mv^2}{\omega\left|1-\beta^2\varepsilon\right|} -
|
|---|
| 152 | \right. \right. \nonumber \\
|
|---|
| 153 | & & \left. \left.
|
|---|
| 154 | - \frac{\varepsilon_1-\beta^2\left|\varepsilon\right|^2}{\varepsilon_2}
|
|---|
| 155 | \arg(1-\beta^2\varepsilon^*)
|
|---|
| 156 | \right]
|
|---|
| 157 | + \frac{1}{\omega^2}\int_{I_1}^{\omega}\tilde{\sigma}_{\gamma}(\omega')d\omega'
|
|---|
| 158 | \right\} .
|
|---|
| 159 | \end{eqnarray}
|
|---|
| 160 | This is especially simple in gases when
|
|---|
| 161 | $\left|\varepsilon(\omega)\right|^{-2} \sim 1$ for all $\omega > I_1$
|
|---|
| 162 | \cite{allis}.
|
|---|
| 163 |
|
|---|
| 164 | \subsection{Energy Loss Simulation}
|
|---|
| 165 |
|
|---|
| 166 | For a given track length the number of ionizing collisions is simulated by
|
|---|
| 167 | a Poisson distribution whose mean is proportional to the total cross
|
|---|
| 168 | section of ionizing collisions:
|
|---|
| 169 |
|
|---|
| 170 | \[
|
|---|
| 171 | \sigma_i = \int_{I_1}^{\omega_{max}}\frac{d\sigma(\omega')}{d\omega'}d\omega' .
|
|---|
| 172 | \]
|
|---|
| 173 | The energy transfer in each collision is simulated according to a
|
|---|
| 174 | distribution proportional to
|
|---|
| 175 |
|
|---|
| 176 | \[
|
|---|
| 177 | \sigma_i(>\omega) = \int_{\omega}^{\omega_{max}}
|
|---|
| 178 | \frac{d\sigma(\omega')}{d\omega'}d\omega' .
|
|---|
| 179 | \]
|
|---|
| 180 | The sum of the energy transfers is equal to the energy loss. PAI ionisation is implemented
|
|---|
| 181 | according to the model approach (class G4PAIModel) allowing a user to select specific
|
|---|
| 182 | models in different regions. Here is an example physics list:
|
|---|
| 183 | \begin{verbatim}
|
|---|
| 184 | const G4RegionStore* theRegionStore = G4RegionStore::GetInstance();
|
|---|
| 185 | G4Region* gas = theRegionStore->GetRegion("VertexDetector");
|
|---|
| 186 | ...
|
|---|
| 187 | if (particleName == "e-")
|
|---|
| 188 | {
|
|---|
| 189 | G4eIonisation* eion = new G4eIonisation();
|
|---|
| 190 | G4PAIModel* pai = new G4PAIModel(particle,
|
|---|
| 191 | "PAIModel");
|
|---|
| 192 | // set energy limits where 'pai' is active
|
|---|
| 193 | pai->SetLowEnergyLimit(0.1*keV);
|
|---|
| 194 | pai->SetHighEnergyLimit(100.0*TeV);
|
|---|
| 195 |
|
|---|
| 196 | // here 0 is the highest priority in region 'gas'
|
|---|
| 197 | eion->AddEmModel(0,pai,pai,gas);
|
|---|
| 198 |
|
|---|
| 199 | pmanager->AddProcess(eion,-1, 2, 2);
|
|---|
| 200 | pmanager->AddProcess(new G4MultipleScattering, -1, 1,1);
|
|---|
| 201 | pmanager->AddProcess(new G4eBremsstrahlung,-1,1,3);
|
|---|
| 202 | }
|
|---|
| 203 | \end{verbatim}
|
|---|
| 204 | It shows how to select the G4PAIModel to be the preferred ionisation model for electrons
|
|---|
| 205 | in a G4Region named VertexDetector. The first argument in AddEmModel is 0 which means
|
|---|
| 206 | highest priority.
|
|---|
| 207 |
|
|---|
| 208 | The class G4PAIPhotonModel generates both $\delta$-electrons and photons as secondaries
|
|---|
| 209 | and can be used for more detailed descriptions of ionisation space distribution around
|
|---|
| 210 | the particle trajectory.
|
|---|
| 211 |
|
|---|
| 212 | \subsection{Status of this document}
|
|---|
| 213 |
|
|---|
| 214 | 01.12.05 expanded discussion by V. Grichine \\
|
|---|
| 215 | 08.05.02 re-written by D.H. Wright \\
|
|---|
| 216 | 16.11.98 created by V. Grichine \\
|
|---|
| 217 |
|
|---|
| 218 | \begin{latexonly}
|
|---|
| 219 |
|
|---|
| 220 | \begin{thebibliography}{99}
|
|---|
| 221 | \bibitem{pai.asosk} Asoskov V.S., Chechin V.A., Grichine V.M. at el,
|
|---|
| 222 | {Lebedev Institute annual report, v. 140, p. 3} (1982)
|
|---|
| 223 | \bibitem{pai.fano} Fano U., and Cooper J.W.
|
|---|
| 224 | {Rev.Mod.Phys., v. 40, p. 441} (1968)
|
|---|
| 225 | \bibitem{sandia} Biggs F., and Lighthill R.,
|
|---|
| 226 | {Preprint Sandia Laboratory, SAND 87-0070} (1990)
|
|---|
| 227 | \bibitem{allis} Allison W.W.M., and Cobb J.
|
|---|
| 228 | {Ann.Rev.Nucl.Part.Sci., v.30,p.253} (1980)
|
|---|
| 229 | \end{thebibliography}
|
|---|
| 230 |
|
|---|
| 231 | \end{latexonly}
|
|---|
| 232 |
|
|---|
| 233 | \begin{htmlonly}
|
|---|
| 234 |
|
|---|
| 235 | \subsection{Bibliography}
|
|---|
| 236 |
|
|---|
| 237 | \begin{enumerate}
|
|---|
| 238 | \item Asoskov V.S., Chechin V.A., Grichine V.M. at el,
|
|---|
| 239 | {Lebedev Institute annual report, v. 140, p. 3} (1982)
|
|---|
| 240 | \item Fano U., and Cooper J.W.
|
|---|
| 241 | {Rev.Mod.Phys., v. 40, p. 441} (1968)
|
|---|
| 242 | \item Biggs F., and Lighthill R.,
|
|---|
| 243 | {Preprint Sandia Laboratory, SAND 87-0070} (1990)
|
|---|
| 244 | \item Allison W.W.M., and Cobb J.
|
|---|
| 245 | {Ann.Rev.Nucl.Part.Sci., v.30,p.253} (1980)
|
|---|
| 246 | \end{enumerate}
|
|---|
| 247 |
|
|---|
| 248 | \end{htmlonly}
|
|---|
| 249 |
|
|---|
| 250 |
|
|---|