source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/electromagnetic/standard/pai.tex @ 1344

Last change on this file since 1344 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 8.9 KB
Line 
1\section[Photoabsorption ionization model]{Photoabsorption Ionization Model}
2  \label{secpai}
3 
4\subsection{Cross Section for Ionizing Collisions}
5
6The Photoabsorption Ionization (PAI) model describes the ionization energy
7loss of a relativistic charged particle in matter.  For such a particle, the
8differential cross section $d\sigma_i/d\omega$ for ionizing collisions with
9energy transfer $\omega$ can be expressed most generally by the following
10equations \cite{pai.asosk}:
11
12\begin{eqnarray}
13\label{PAI1}
14\frac{d\sigma_i}{d\omega} 
15& = & \frac{2\pi Ze^4}{mv^2}   
16\left\{
17\frac{f(\omega)}{\omega\left|\varepsilon(\omega)\right|^2}
18\left[
19\ln\frac{2mv^2}{\omega\left|1-\beta^2\varepsilon\right|} - 
20\right. \right. \nonumber \\
21&& \left. \left.
22- \frac{\varepsilon_1 - \beta^2\left|\varepsilon\right|^2}{\varepsilon_2}
23\arg(1-\beta^2\varepsilon^*)
24\right] +
25 \frac{\tilde{F}(\omega)}{\omega^2}
26\right\} ,
27\end{eqnarray}
28
29\[
30\tilde{F}(\omega) = \int_{0}^{\omega}\frac{f(\omega')}
31{\left|\varepsilon(\omega')\right|^2}d\omega' ,
32\]
33
34\[
35f(\omega) = \frac{m\omega\varepsilon_2(\omega)}{2\pi^2ZN\hbar^2} .
36\]
37Here $m$ and $e$ are the electron mass and charge, $\hbar$ is Planck's
38constant, $\beta = v/c$ is the ratio of the particle's velocity $v$ to
39the speed of light $c$, $Z$ is the effective atomic number, $N$ is the
40number of atoms (or molecules) per unit volume, and
41$\varepsilon = \varepsilon_1 + i\varepsilon_2$ is the complex dielectric
42constant of the medium.  In an isotropic non-magnetic medium the dielectric
43constant can be expressed in terms of a complex index of refraction,
44$n(\omega) = n_1 + in_2$, $\varepsilon(\omega) = n^2(\omega)$.  In the
45energy range above the first ionization potential $I_1$ for all cases of
46practical interest, and in particular for all gases, $n_1 \sim 1$.
47Therefore the imaginary part of the dielectric constant can be expressed in
48terms of the photoabsorption cross section $\sigma_{\gamma}(\omega)$:
49
50\[
51\varepsilon_2(\omega) = 2n_1n_2 \sim 2n_2 = \frac{N\hbar c}{\omega}
52\sigma_{\gamma}(\omega) .
53\]
54The real part of the dielectric constant is calculated in turn from the
55dispersion relation
56
57\[
58\varepsilon_1(\omega) - 1 = \frac{2N\hbar c}{\pi}V.p.\int_{0}^{\infty}
59\frac{\sigma_{\gamma}(\omega')}{\omega'^2 - \omega^2}d\omega'  ,
60\]
61where the integral of the pole expression is considered in terms of the
62principal value.  In practice it is convenient to calculate the contribution
63from the continuous part of the spectrum only.  In this case the normalized
64photoabsorption cross section
65
66\[
67\tilde{\sigma}_{\gamma}(\omega) = \frac{2\pi^2\hbar e^2Z}{mc}
68\sigma_{\gamma}(\omega)
69\left[
70\int_{I_1}^{\omega_{max}}\sigma_{\gamma}(\omega')d\omega'
71\right]^{-1}, \  \omega_{max} \sim 100 \ keV
72\]
73is used, which satisfies the quantum mechanical sum rule \cite{pai.fano}:
74
75\[
76\int_{I_1}^{\omega_{max}}\tilde{\sigma}_{\gamma}(\omega')d\omega' = 
77\frac{2\pi^2\hbar e^2Z}{mc} .
78\]
79
80\noindent
81The differential cross section for ionizing collisions is expressed by the
82photoabsorption cross section in the continuous spectrum region:
83
84\begin{eqnarray}
85\frac{d\sigma_i}{d\omega}
86& = & \frac{\alpha}{\pi\beta^2}
87\left\{
88\frac{\tilde{\sigma}_{\gamma}(\omega)}
89{\omega\left|\varepsilon(\omega)\right|^2}
90\left[
91\ln\frac{2mv^2}{\omega\left|1-\beta^2\varepsilon\right|} -
92\right. \right.   \nonumber \\
93&   & \left. \left.
94- \frac{\varepsilon_1-\beta^2\left|\varepsilon\right|^2}{\varepsilon_2}
95\arg(1-\beta^2\varepsilon^*)
96\right]
97 + \frac{1}{\omega^2}\int_{I_1}^{\omega}\frac{\tilde{\sigma}_{\gamma}(\omega')}
98{\left|\varepsilon(\omega')\right|^2}d\omega'
99\right\} ,
100\end{eqnarray}
101
102\[
103\varepsilon_2(\omega) = \frac{N\hbar c}{\omega}
104\tilde{\sigma}_{\gamma}(\omega) ,
105\]
106
107\[
108\varepsilon_1(\omega) - 1 = \frac{2N\hbar c}{\pi}V.p.\int_{I_1}^{\omega_{max}}
109\frac{\tilde{\sigma}_{\gamma}(\omega')}{\omega'^2 - \omega^2}d\omega'  .
110\] 
111\\
112
113\noindent
114For practical calculations using Eq.~\ref{PAI1} it is convenient to
115represent the photoabsorption cross section as a polynomial in $\omega^{-1}$ 
116as was proposed in \cite{sandia}:
117
118\[
119\sigma_{\gamma}(\omega) = \sum_{k=1}^{4}a_{k}^{(i)}\omega^{-k} ,
120\]
121where the coefficients, $a_{k}^{(i)}$ result from a separate least-squares
122fit to experimental data in each energy interval $i$.  As a rule the
123interval borders are equal to the corresponding photoabsorption edges.  The
124dielectric constant can now be calculated analytically with elementary
125functions for all $\omega$, except near the photoabsorption edges where
126there are breaks in the photoabsorption cross section and the integral for
127the real part is not defined in the sense of the principal value. \\
128
129\noindent 
130The third term in Eq. (\ref{PAI1}), which can only be integrated
131numerically, results in a complex calculation of $d\sigma_i/d\omega$.
132However, this term is dominant for energy transfers $\omega > 10\ keV$,
133where the function $\left|\varepsilon(\omega)\right|^2 \sim 1$.  This is
134clear from physical reasons, because the third term represents the
135Rutherford cross section on atomic electrons which can be considered as
136quasifree for a given energy transfer \cite{allis}.  In addition, for high
137energy transfers,
138$\varepsilon(\omega) = 1 - \omega_{p}^{2}/\omega^2 \sim 1$,
139where $\omega_{p}$ is the plasma energy of the material.  Therefore the
140factor $\left|\varepsilon(\omega)\right|^{-2}$ can be removed from under the
141integral and the differential cross section of ionizing collisions can be
142expressed as:
143
144\begin{eqnarray}
145\frac{d\sigma_i}{d\omega}
146& = &\frac{\alpha}
147{\pi\beta^2\left|\varepsilon(\omega)\right|^2}
148\left\{
149\frac{\tilde{\sigma}_{\gamma}(\omega)}{\omega}
150\left[
151\ln\frac{2mv^2}{\omega\left|1-\beta^2\varepsilon\right|} -
152\right. \right. \nonumber \\ 
153&   & \left. \left.
154- \frac{\varepsilon_1-\beta^2\left|\varepsilon\right|^2}{\varepsilon_2}
155\arg(1-\beta^2\varepsilon^*)
156\right]
157 + \frac{1}{\omega^2}\int_{I_1}^{\omega}\tilde{\sigma}_{\gamma}(\omega')d\omega'
158\right\} .
159\end{eqnarray}
160This is especially simple in gases when
161$\left|\varepsilon(\omega)\right|^{-2} \sim 1$  for all $\omega > I_1$
162\cite{allis}.
163
164\subsection{Energy Loss Simulation}
165
166For a given track length the number of ionizing collisions is simulated by
167a Poisson distribution whose mean is proportional to the total cross
168section of ionizing collisions:
169
170\[
171\sigma_i = \int_{I_1}^{\omega_{max}}\frac{d\sigma(\omega')}{d\omega'}d\omega' .
172\]
173The energy transfer in each collision is simulated according to a
174distribution proportional to
175
176\[
177\sigma_i(>\omega) = \int_{\omega}^{\omega_{max}}
178\frac{d\sigma(\omega')}{d\omega'}d\omega' .
179\]
180The sum of the energy transfers is equal to the energy loss. PAI ionisation is implemented
181according to the model approach (class G4PAIModel) allowing a user to select specific
182models in different regions. Here is an example physics list:
183\begin{verbatim}
184  const G4RegionStore* theRegionStore = G4RegionStore::GetInstance();
185  G4Region* gas = theRegionStore->GetRegion("VertexDetector");
186  ...
187  if (particleName == "e-")
188  { 
189    G4eIonisation* eion = new G4eIonisation();
190    G4PAIModel*     pai = new G4PAIModel(particle,
191                                                 "PAIModel");
192    // set energy limits where 'pai' is active
193    pai->SetLowEnergyLimit(0.1*keV);
194    pai->SetHighEnergyLimit(100.0*TeV);
195
196    // here 0 is the highest priority in region 'gas'
197    eion->AddEmModel(0,pai,pai,gas);
198
199    pmanager->AddProcess(eion,-1, 2, 2);
200    pmanager->AddProcess(new G4MultipleScattering, -1, 1,1);
201    pmanager->AddProcess(new G4eBremsstrahlung,-1,1,3);           
202  } 
203\end{verbatim}
204It shows how to select the G4PAIModel to be the preferred ionisation model for electrons
205in a G4Region named VertexDetector.  The first argument in AddEmModel is 0 which means
206highest priority.
207 
208The class G4PAIPhotonModel generates both $\delta$-electrons and photons as secondaries
209and can be used for more detailed descriptions of ionisation space distribution around
210the particle trajectory.
211
212\subsection{Status of  this document}
213
21401.12.05 expanded discussion by V. Grichine \\
21508.05.02 re-written by D.H. Wright \\
21616.11.98 created by V. Grichine \\
217
218\begin{latexonly}
219
220\begin{thebibliography}{99}
221\bibitem{pai.asosk} Asoskov V.S., Chechin V.A., Grichine V.M. at el,
222{Lebedev Institute annual report, v. 140, p. 3} (1982)
223\bibitem{pai.fano} Fano U., and Cooper J.W.
224{Rev.Mod.Phys., v. 40, p. 441} (1968)
225\bibitem{sandia} Biggs F., and Lighthill R.,
226{Preprint Sandia Laboratory, SAND 87-0070} (1990)
227\bibitem{allis} Allison W.W.M., and Cobb J.
228{Ann.Rev.Nucl.Part.Sci., v.30,p.253} (1980)
229\end{thebibliography}
230
231\end{latexonly}
232
233\begin{htmlonly}
234
235\subsection{Bibliography}
236
237\begin{enumerate}
238\item Asoskov V.S., Chechin V.A., Grichine V.M. at el,
239{Lebedev Institute annual report, v. 140, p. 3} (1982)
240\item Fano U., and Cooper J.W.
241{Rev.Mod.Phys., v. 40, p. 441} (1968)
242\item Biggs F., and Lighthill R.,
243{Preprint Sandia Laboratory, SAND 87-0070} (1990)
244\item Allison W.W.M., and Cobb J.
245{Ann.Rev.Nucl.Part.Sci., v.30,p.253} (1980)
246\end{enumerate}
247
248\end{htmlonly}
249
250
Note: See TracBrowser for help on using the repository browser.