| 1 |
|
|---|
| 2 | \section[Photoelectric Effect]{PhotoElectric effect}
|
|---|
| 3 | \label{sec:em.pee}
|
|---|
| 4 |
|
|---|
| 5 | The photoelectric effect is the ejection of an electron from a material after
|
|---|
| 6 | a photon has been absorbed by that material. It is simulated by using a
|
|---|
| 7 | parameterized photon absorption cross section to determine the mean free path,
|
|---|
| 8 | atomic shell data to determine the energy of the ejected electron, and the
|
|---|
| 9 | K-shell angular distribution to sample the direction of the electron.
|
|---|
| 10 |
|
|---|
| 11 | \subsection{Cross Section and Mean Free Path}
|
|---|
| 12 |
|
|---|
| 13 | The parameterization of the photoabsorption cross section proposed by
|
|---|
| 14 | Biggs et al. \cite{ph.sandia} was used :
|
|---|
| 15 | \begin{equation} \label{eqsandia}
|
|---|
| 16 | \sigma(Z,E_{\gamma}) = \frac{a(Z,E_{\gamma})}{E_{\gamma}} +
|
|---|
| 17 | \frac{b(Z,E_{\gamma})}{E_{\gamma}^2} +
|
|---|
| 18 | \frac{c(Z,E_{\gamma})}{E_{\gamma}^3} +
|
|---|
| 19 | \frac{d(Z,E_{\gamma})}{E_{\gamma}^4}
|
|---|
| 20 | \end{equation}
|
|---|
| 21 |
|
|---|
| 22 | \noindent
|
|---|
| 23 | Using the least-squares method, a separate fit of each of the coefficients
|
|---|
| 24 | $a,b,c,d$ to the experimental data was performed in several energy intervals
|
|---|
| 25 | \cite{ph.sandia.grich}. As a rule, the boundaries of these intervals were
|
|---|
| 26 | equal to the corresponding photoabsorption edges.
|
|---|
| 27 |
|
|---|
| 28 | \noindent
|
|---|
| 29 | In a given material the mean free path, $\lambda$, for a photon to interact
|
|---|
| 30 | via the photoelectric effect is given by :
|
|---|
| 31 | \begin{equation} \label{lambda}
|
|---|
| 32 | \lambda(E_{\gamma}) =
|
|---|
| 33 | \left( \sum_i n_{ati} \cdot \sigma (Z_i,E_{\gamma}) \right)^{-1}
|
|---|
| 34 | \end{equation}
|
|---|
| 35 | where $n_{ati}$ is the number of atoms per volume of the $i^{th}$ element
|
|---|
| 36 | of the material. The cross section and mean free path are
|
|---|
| 37 | discontinuous and must be computed 'on the fly' from the formulas
|
|---|
| 38 | \ref{eqsandia} and \ref{lambda}.
|
|---|
| 39 |
|
|---|
| 40 | \subsection{Final State}
|
|---|
| 41 | \subsubsection{Choosing an Element}
|
|---|
| 42 | The binding energies of the shells depend on the atomic number $Z$ of the
|
|---|
| 43 | material. In compound materials the $i^{th}$ element is chosen randomly
|
|---|
| 44 | according to the probability:
|
|---|
| 45 | \[
|
|---|
| 46 | Prob(Z_i,E_{\gamma}) =
|
|---|
| 47 | \frac{n_{ati} \sigma(Z_i,E_{\gamma})}
|
|---|
| 48 | {\sum_i [ n_{ati} \cdot \sigma_i (E_{\gamma})]} .
|
|---|
| 49 | \]
|
|---|
| 50 | \subsubsection{Shell}
|
|---|
| 51 | A quantum can be absorbed if $E_{\gamma} > B_{shell}$ where the shell
|
|---|
| 52 | energies are taken from {\tt G4AtomicShells} data: the closest available
|
|---|
| 53 | atomic shell is chosen. The photoelectron is emitted with kinetic energy :
|
|---|
| 54 | \begin{equation}
|
|---|
| 55 | T_{photoelectron} = E_{\gamma}-B_{shell}(Z_i)
|
|---|
| 56 | \end{equation}
|
|---|
| 57 |
|
|---|
| 58 | \subsubsection{Theta Distribution of the Photoelectron}
|
|---|
| 59 | The polar angle of the photoelectron is sampled from the Sauter-Gavrila
|
|---|
| 60 | distribution (for K-shell) \cite{ph.cost}, which is correct only to zero order
|
|---|
| 61 | in $\alpha Z$ :
|
|---|
| 62 | \begin{equation}
|
|---|
| 63 | \frac{d\sigma}{d(\cos\theta)} \sim \frac{\sin^2\theta}{(1-\beta\cos\theta)^4}
|
|---|
| 64 | \left\lbrace 1 + \frac{1}{2} \gamma (\gamma-1)(\gamma-2)(1-\beta\cos\theta)
|
|---|
| 65 | \right\rbrace
|
|---|
| 66 | \end{equation}
|
|---|
| 67 | where $\beta$ and $\gamma$ are the Lorentz factors of the photoelectron.
|
|---|
| 68 |
|
|---|
| 69 | \noindent
|
|---|
| 70 | $\cos\theta$ is sampled from the probability density function :
|
|---|
| 71 | \begin{equation}
|
|---|
| 72 | f(\cos\theta) = \frac{1-\beta^2}{2\beta} \frac{1}{(1-\beta\cos\theta)^2}
|
|---|
| 73 | \hspace{5mm} \Longrightarrow \hspace{5mm}
|
|---|
| 74 | \cos\theta = \frac{(1-2r)+\beta}{(1-2r)\beta+1}
|
|---|
| 75 | \end{equation}
|
|---|
| 76 | The rejection function is :
|
|---|
| 77 | \begin{equation}
|
|---|
| 78 | g(\cos\theta) = \frac{1-\cos^2\theta}{(1-\beta\cos\theta)^2}
|
|---|
| 79 | \left\lbrack 1+b(1-\beta\cos\theta) \right\rbrack
|
|---|
| 80 | \end{equation}
|
|---|
| 81 | with $b=\gamma(\gamma-1)(\gamma-2)/2$ \\
|
|---|
| 82 | It can be shown that $g(\cos\theta)$ is positive $\forall \cos\theta \in
|
|---|
| 83 | [-1,\ +1]$, and can be majored by :
|
|---|
| 84 | \begin{eqnarray}
|
|---|
| 85 | gsup&=&\gamma^2 \ \lbrack 1+b(1-\beta) \rbrack \mbox{ if } \gamma \in \ ]1,2] \\
|
|---|
| 86 | &=&\gamma^2 \ \lbrack 1+b(1+\beta) \rbrack \mbox{ if } \gamma > 2 \nonumber
|
|---|
| 87 | \end{eqnarray}
|
|---|
| 88 | The efficiency of this method is $\sim 50\%$ if $\gamma < 2$, $\sim 25\%$ if
|
|---|
| 89 | $\gamma \in [2,\ 3]$.
|
|---|
| 90 |
|
|---|
| 91 | \subsubsection{Relaxation}
|
|---|
| 92 | In the current implementation the relaxation of the atom is not simulated,
|
|---|
| 93 | but instead is counted as a local energy deposit.
|
|---|
| 94 |
|
|---|
| 95 | \subsection{Status of this document}
|
|---|
| 96 | 09.10.98 created by M.Maire. \\
|
|---|
| 97 | 08.01.02 updated by mma \\
|
|---|
| 98 | 22.04.02 re-worded by D.H. Wright \\
|
|---|
| 99 | 02.05.02 modifs in total cross section and final state (mma) \\
|
|---|
| 100 | 15.11.02 introduction added by D.H. Wright \\
|
|---|
| 101 |
|
|---|
| 102 | \begin{latexonly}
|
|---|
| 103 |
|
|---|
| 104 | \begin{thebibliography}{99}
|
|---|
| 105 | \bibitem{ph.sandia} Biggs F., and Lighthill R.,
|
|---|
| 106 | {Preprint Sandia Laboratory, SAND 87-0070} (1990)
|
|---|
| 107 | \bibitem{ph.sandia.grich} Grichine V.M., Kostin A.P., Kotelnikov S.K. et al.,
|
|---|
| 108 | {Bulletin of the Lebedev Institute no. 2-3, 34} (1994).
|
|---|
| 109 | \bibitem{ph.cost} Gavrila M.
|
|---|
| 110 | {Phys.Rev. 113, 514} (1959).
|
|---|
| 111 | \end{thebibliography}
|
|---|
| 112 |
|
|---|
| 113 | \end{latexonly}
|
|---|
| 114 |
|
|---|
| 115 | \begin{htmlonly}
|
|---|
| 116 |
|
|---|
| 117 | \subsection{Bibliography}
|
|---|
| 118 |
|
|---|
| 119 | \begin{enumerate}
|
|---|
| 120 | \item Biggs F., and Lighthill R.,
|
|---|
| 121 | {Preprint Sandia Laboratory, SAND 87-0070} (1990)
|
|---|
| 122 | \item Grichine V.M., Kostin A.P., Kotelnikov S.K. et al.,
|
|---|
| 123 | {Bulletin of the Lebedev Institute no. 2-3, 34} (1994).
|
|---|
| 124 | \item Gavrila M.
|
|---|
| 125 | {Phys.Rev. 113, 514} (1959).
|
|---|
| 126 | \end{enumerate}
|
|---|
| 127 |
|
|---|
| 128 | \end{htmlonly}
|
|---|
| 129 |
|
|---|
| 130 |
|
|---|
| 131 |
|
|---|
| 132 |
|
|---|