source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/electromagnetic/standard/photoelec.tex @ 1345

Last change on this file since 1345 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 4.8 KB
Line 
1
2\section[Photoelectric Effect]{PhotoElectric effect}
3\label{sec:em.pee}
4
5The photoelectric effect is the ejection of an electron from a material after
6a photon has been absorbed by that material.  It is simulated by using a
7parameterized photon absorption cross section to determine the mean free path,
8atomic shell data to determine the energy of the ejected electron, and the
9K-shell angular distribution to sample the direction of the electron.
10 
11\subsection{Cross Section and Mean Free Path}
12
13The parameterization of the photoabsorption cross section proposed by
14Biggs et al. \cite{ph.sandia} was used :
15\begin{equation}  \label{eqsandia}
16\sigma(Z,E_{\gamma}) = \frac{a(Z,E_{\gamma})}{E_{\gamma}} +
17                       \frac{b(Z,E_{\gamma})}{E_{\gamma}^2} +
18                       \frac{c(Z,E_{\gamma})}{E_{\gamma}^3} +
19                       \frac{d(Z,E_{\gamma})}{E_{\gamma}^4}
20\end{equation}
21
22\noindent 
23Using the least-squares method, a separate fit of each of the coefficients
24$a,b,c,d$ to the experimental data was performed in several energy intervals
25\cite{ph.sandia.grich}.  As a rule, the boundaries of these intervals were
26equal to the corresponding photoabsorption edges.
27 
28\noindent
29In a given material the mean free path, $\lambda$, for a photon to interact
30via the photoelectric effect is given by :
31\begin{equation}  \label{lambda}
32\lambda(E_{\gamma}) =
33 \left( \sum_i n_{ati} \cdot \sigma (Z_i,E_{\gamma}) \right)^{-1}
34\end{equation}
35where $n_{ati}$ is the number of atoms per volume of the $i^{th}$ element
36of the material.  The cross section and mean free path are
37discontinuous and must be computed 'on the fly' from the formulas
38 \ref{eqsandia} and \ref{lambda}.
39
40\subsection{Final State}
41\subsubsection{Choosing an Element}
42The binding energies of the shells depend on the atomic number $Z$ of the
43material.  In compound materials the $i^{th}$ element is chosen randomly
44according to the probability:
45\[
46  Prob(Z_i,E_{\gamma}) = 
47                      \frac{n_{ati} \sigma(Z_i,E_{\gamma})}
48                      {\sum_i [ n_{ati} \cdot \sigma_i (E_{\gamma})]} .
49\]
50\subsubsection{Shell}
51A quantum can be absorbed if $E_{\gamma} > B_{shell}$ where the shell
52energies are taken from {\tt G4AtomicShells} data: the closest available
53atomic shell is chosen.  The photoelectron is emitted with kinetic energy :
54\begin{equation}
55T_{photoelectron} = E_{\gamma}-B_{shell}(Z_i)
56\end{equation}
57
58\subsubsection{Theta Distribution of the Photoelectron}
59The polar angle of the photoelectron is sampled from the Sauter-Gavrila
60distribution (for K-shell) \cite{ph.cost}, which is correct only to zero order
61in $\alpha Z$ :
62\begin{equation}
63\frac{d\sigma}{d(\cos\theta)} \sim \frac{\sin^2\theta}{(1-\beta\cos\theta)^4}
64\left\lbrace 1 + \frac{1}{2} \gamma (\gamma-1)(\gamma-2)(1-\beta\cos\theta)
65\right\rbrace
66\end{equation}
67where $\beta$ and $\gamma$ are the Lorentz factors of the photoelectron.
68
69\noindent
70$\cos\theta$ is sampled from the probability density function :
71\begin{equation}
72f(\cos\theta) = \frac{1-\beta^2}{2\beta} \frac{1}{(1-\beta\cos\theta)^2}
73\hspace{5mm} \Longrightarrow \hspace{5mm}
74\cos\theta = \frac{(1-2r)+\beta}{(1-2r)\beta+1}
75\end{equation}
76The rejection function is :
77\begin{equation}
78g(\cos\theta) = \frac{1-\cos^2\theta}{(1-\beta\cos\theta)^2}
79\left\lbrack 1+b(1-\beta\cos\theta) \right\rbrack
80\end{equation}
81with $b=\gamma(\gamma-1)(\gamma-2)/2$  \\
82It can be shown that $g(\cos\theta)$ is positive $\forall \cos\theta \in
83[-1,\ +1]$, and can be majored by :
84\begin{eqnarray}
85gsup&=&\gamma^2 \ \lbrack 1+b(1-\beta) \rbrack \mbox{ if } \gamma \in \ ]1,2] \\
86    &=&\gamma^2 \ \lbrack 1+b(1+\beta) \rbrack \mbox{ if } \gamma > 2 \nonumber
87\end{eqnarray}
88The efficiency of this method is $\sim 50\%$ if $\gamma < 2$, $\sim 25\%$ if
89$\gamma \in [2,\ 3]$.
90
91\subsubsection{Relaxation} 
92In the current implementation the relaxation of the atom is not simulated,
93but instead is counted as a local energy deposit.
94
95\subsection{Status of this document}
9609.10.98 created by M.Maire. \\
9708.01.02 updated by mma \\
9822.04.02 re-worded by D.H. Wright \\
9902.05.02 modifs in total cross section and final state (mma) \\
10015.11.02 introduction added by D.H. Wright \\
101
102\begin{latexonly}
103
104\begin{thebibliography}{99}
105\bibitem{ph.sandia} Biggs F., and Lighthill R.,
106{Preprint Sandia Laboratory, SAND 87-0070} (1990)
107\bibitem{ph.sandia.grich} Grichine V.M., Kostin A.P., Kotelnikov S.K. et al.,
108{Bulletin of the Lebedev Institute no. 2-3, 34} (1994).
109\bibitem{ph.cost} Gavrila M.
110{Phys.Rev. 113, 514} (1959).
111\end{thebibliography}
112
113\end{latexonly}
114
115\begin{htmlonly}
116
117\subsection{Bibliography}
118
119\begin{enumerate}
120\item Biggs F., and Lighthill R.,
121{Preprint Sandia Laboratory, SAND 87-0070} (1990)
122\item Grichine V.M., Kostin A.P., Kotelnikov S.K. et al.,
123{Bulletin of the Lebedev Institute no. 2-3, 34} (1994).
124\item Gavrila M.
125{Phys.Rev. 113, 514} (1959).
126\end{enumerate}
127
128\end{htmlonly}
129
130
131
132
Note: See TracBrowser for help on using the repository browser.