source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/electromagnetic/standard/polarisation.tex @ 1345

Last change on this file since 1345 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 77.2 KB
Line 
1
2% ======================================================================
3
4%\newcommand{\bvec}[1]{{\mathbf{#1}}}
5\newcommand{\bvec}[1]{{\boldsymbol{#1}}}  %% use boldsymbol if amsmath is available!
6
7\section{Introduction}\label{sec:pol.intro}
8
9With the EM polarization extension it is possible to track polarized
10particles (leptons and photons). Special emphasis will be
11put in the proper treatment of polarized matter and its interaction
12with longitudinal polarized electrons/positrons or circularly
13polarized photons, which is for instance essential for the simulation
14of positron polarimetry. The implementation is base on Stokes vectors
15\cite{polIntro:McMaster:1961}. Further details can be found in
16\cite{polIntro:Laihem:thesis}.
17
18In its current state, the following polarization
19dependent processes are considered
20\begin{itemize}
21\item Bhabha/M{\o}ller scattering,
22\item Positron Annihilation,
23\item Compton scattering,
24\item Pair creation,
25\item Bremsstrahlung.
26\end{itemize}
27
28%\subsection{Existing codes for the simulation of polarized processes}
29
30Several simulation packages for the realistic description
31of the development of electromagnetic showers in matter have been
32developed. A prominent example of such codes is EGS (Electron Gamma
33Shower)\cite{polIntro:Nelson:1985ec}.
34For this simulation framework extensions with the treatment of
35polarized particles exist \cite{polIntro:Floettmann:thesis,polIntro:Namito:1993sv,polIntro:Liu:2000ey};
36the most complete has been developed by K.~Fl{\"o}ttmann
37\cite{polIntro:Floettmann:thesis}. It is based on the matrix formalism
38\cite{polIntro:McMaster:1961}, which enables a very general treatment of
39polarization. However, the Fl{\"o}ttmann extension concentrates on
40evaluation of polarization transfer, i.e.\ the effects of polarization
41induced asymmetries are neglected, and interactions with polarized
42media are not considered. 
43
44Another important simulation tool for detector studies is \textsc{Geant3}
45\cite{polIntro:Brun:1985ps}. Here also some effort has been made to include
46polarization \cite{polIntro:Alexander:2003fh,polIntro:Hoogduin:thesis}, but these
47extensions are not publicly available.
48
49%\section{Definitions}
50
51In general the implementation of polarization in this EM polarization
52library follows very closely the approach by K.~Fl{\"o}tt\-mann
53\cite{polIntro:Floettmann:thesis}. The basic principle is to associate a {\em
54Stokes vector} to each particle and track the mean polarization from
55one interaction to another. The basics for this approach is the matrix
56formalism as introduced in \cite{polIntro:McMaster:1961}.
57
58\subsection{Stokes vector}
59
60The {\em Stokes vector} \cite{polIntro:Stokes:1852,polIntro:McMaster:1961} is a rather
61simple object (in comparison to e.g.\ the spin density matrix), three
62real numbers are sufficient for the characterization of the polarization
63state of any single electron, positron or photon.
64Using {\em Stokes vectors} {\bf all} possible polarization states can
65be described, i.e.\ circular and linear polarized photons can be
66handled with the same formalism as longitudinal
67and transverse polarized electron/positrons.
68
69The {\em Stokes vector} can be used also for beams, in the sense that
70it defines a mean polarization.
71
72In the EM polarization library the Stokes vector is  defined as
73follows:
74
75\begin{center}
76%\rotatebox{90}{ Method A}
77\renewcommand{\arraystretch}{1.15}
78\begin{tabular}{|c|c|c|}
79\hline
80        & Photons                    & Electrons \\
81\hline 
82$\xi_1$ & linear polarization        &  polarization in x direction \\
83$\xi_2$ & linear polarization but $\pi/4$ to right
84                                     &  polarization in y direction \\
85$\xi_3$ & circular polarization      &  polarization in z direction \\
86\hline
87\end{tabular}
88\end{center}
89This definition is assumed in the {\em particle reference frame},
90i.e. with the momentum of the particle pointing to the z direction,
91cf.\ also next section about coordinate transformations.
92Correspondingly a 100\% longitudinally polarized
93electron or positron is characterized by
94\begin{equation}
95  \bvec{\xi}=\mbox{$\scriptscriptstyle\left(\begin{array}{c}0\\0\\\pm1\end{array}\right)$},
96\end{equation}
97where $\pm1$ corresponds to spin parallel (anti parallel) to   
98particle's momentum.
99%
100Note that this definition is similar, but not
101identical to the definition used in McMaster \cite{polIntro:McMaster:1961}.
102
103Many scattering cross sections of polarized processes using
104Stokes vectors for the characterization of initial and final states are
105available in \cite{polIntro:McMaster:1961}. In general a differential cross
106section has the form
107\begin{equation}
108  \frac{d\sigma(\bvec{\zeta}^{(1)},\bvec{\zeta}^{(2)},\bvec{\xi}^{(1)},\bvec{\xi}^{(2)})}{d\Omega}\;,
109\end{equation}
110i.e.\ it is a function of the polarization states of the initial
111particles $\bvec{\zeta}^{(1)}$ and $\bvec{\zeta}^{(2)}$, as well as of the polarization states
112of the final state particles $\bvec{\xi}^{(1)}$ and $\bvec{\xi}^{(2)}$ (in addition to the
113kinematic variables $E$, $\theta$, and $\phi$).
114
115Consequently, in a simulation we have to account for
116\begin{itemize}
117\item   Asymmetries:
118\item[] Polarization of beam ($\bvec{\zeta}^{(1)}$) and target ($\bvec{\zeta}^{(2)}$) can induce
119azimuthal and polar asymmetries, and may also influence on the total
120cross section ({\tt Geant4: GetMeanFreePath()}).
121\item   Polarization transfer / depolarization effects
122\item[] The dependence on the final state polarizations defines a
123possible transfer from initial polarization to final state particles.
124\end{itemize}
125
126\subsection{Transfer matrix}
127
128%For asymmetries one can extent the existing standard EM physics classes,
129%introducing the polarization of the initial states. On the other hand
130%for a general simulation of polarization transfer one has to work harder.
131Using the formalism of McMaster, differential cross section and
132polarization transfer from the initial state ($\bvec{\zeta}^{(1)}$) to one final state
133particle ($\bvec{\xi}^{(1)}$) are combined in an interaction matrix $T$:
134
135\begin{equation}
136 \left(\begin{array}{c} 
137    O \\
138 \bvec{\xi}^{(1)}   
139 \end{array}\right)
140 = T \,
141 \left(\begin{array}{c} 
142    I \\
143 \bvec{\zeta}^{(1)}   
144 \end{array}\right)\;,
145\end{equation}
146where $I$ and $O$ are the incoming and outgoing currents, respectively.
147%
148In general the $4\times4$ matrix $T$ depends on the target
149polarization $\bvec{\zeta}^{(2)}$ (and of course on the kinematic
150variables $E$, $\theta$, $\phi$). Similarly one can define
151a matrix defining the polarization transfer to second final state
152particle like
153\begin{equation}
154\left(\begin{array}{c}
155 O \\
156 \bvec{\xi}^{(2)}
157\end{array}\right)   
158  = T' \, 
159\left(\begin{array}{c}I\\
160\bvec{\zeta}^{(1)}\end{array}\right)   \;.
161\end{equation}
162%
163%The components $I$ and $O$ refer to the incoming and outgoing
164%intensities, respectively.
165In this framework the transfer matrix $T$  is of the form
166\begin{equation}
167 T =
168  \left(
169  \begin{array}{llll}
170     S   &   A_1    &  A_2    &  A_3    \\
171     P_1 &   M_{11} &  M_{21} &  M_{31} \\
172     P_2 &   M_{12} &  M_{22} &  M_{32} \\
173     P_3 &   M_{13} &  M_{23} &  M_{33} \\
174  \end{array}
175  \right)
176 \;.
177\end{equation}
178The matrix elements $T_{ij}$ can be identified as (unpolarized)
179differential cross section ($S$), polarized differential cross section
180($A_j$), polarization transfer ($M_{ij}$), and (de)polarization ($P_i$).
181In the Fl{\"o}ttmann extension the elements $A_j$ and $P_i$ have been
182neglected, thus concentrating on polarization transfer only.
183Using the full matrix takes now all polarization effects into account.
184
185
186The transformation matrix, i.e.\ the dependence of the mean
187polarization of final state particles, can be derived from the
188asymmetry of the differential cross section w.r.t.\ this particular
189polarization. 
190Where the asymmetry is defined as usual by
191\begin{equation}
192  A = \frac{\sigma(+1)-\sigma(-1)}{\sigma(+1)+\sigma(-1)} \;.
193\end{equation}
194The mean final state polarizations can be determined coefficient by
195coefficient.
196%
197%For instance the components of the mean Stokes vector
198%% following eq.\ \eqref{eq:diffxsec}
199%$\bvec{\hat\xi}^{(1)}$ of the first final state particle is obtained
200%by
201%\begin{equation}
202%  \hat\xi^{(2)}_1 = \frac{\sigma(\bvec{\zeta}^{(1)},\bvec{\zeta}^{(2)},
203%\bvec{\xi}^{(1)}=\mbox{\small$\left(\!\!\begin{array}{c}+1\\0\\0\end{array}\!\!\right)$},
204%\bvec{\xi}^{(2)}=\mbox{\small$\left(\!\!\begin{array}{c}0\\0\\0\end{array}\!\!\right)$})
205%-
206%\sigma(\bvec{\zeta}^{(1)},\bvec{\zeta}^{(2)},
207%\bvec{\xi}^{(1)}=\mbox{\small$\left(\!\!\begin{array}{c}-1\\0\\0\end{array}\!\!\right)$},
208%\bvec{\xi}^{(2)}=\mbox{\small$\left(\!\!\begin{array}{c}0\\0\\0\end{array}\!\!\right)$})
209%}{\sigma(\dots)+\sigma(\dots)}
210%\end{equation}
211%
212%\begin{equation}
213%  \hat\xi^{(2)}_2 = \frac{\sigma(\bvec{\zeta}^{(1)},\bvec{\zeta}^{(2)},
214%\bvec{\xi}^{(1)}=\mbox{\small$\left(\!\!\begin{array}{c}0\\+1\\0\end{array}\!\!\right)$},
215%\bvec{\xi}^{(2)}=\mbox{\small$\left(\!\!\begin{array}{c}0\\0\\0\end{array}\!\!\right)$})
216%-
217%\sigma(\bvec{\zeta}^{(1)},\bvec{\zeta}^{(2)},
218%\bvec{\xi}^{(1)}=\mbox{\small$\left(\!\!\begin{array}{c}0\\-1\\0\end{array}\!\!\right)$},
219%\bvec{\xi}^{(2)}=\mbox{\small$\left(\!\!\begin{array}{c}0\\0\\0\end{array}\!\!\right)$})
220%}{\sigma(\dots)+\sigma(\dots)}
221%\end{equation}
222%
223%\begin{equation}
224%  \hat\xi^{(2)}_3 = \frac{\sigma(\bvec{\zeta}^{(1)},\bvec{\zeta}^{(2)},
225%\bvec{\xi}^{(1)}=\mbox{\small$\left(\!\!\begin{array}{c}0\\0\\+1\end{array}\!\!\right)$},
226%\bvec{\xi}^{(2)}=\mbox{\small$\left(\!\!\begin{array}{c}0\\0\\0\end{array}\!\!\right)$})
227%-
228%\sigma(\bvec{\zeta}^{(1)},\bvec{\zeta}^{(2)},
229%\bvec{\xi}^{(1)}=\mbox{\small$\left(\!\!\begin{array}{c}0\\0\\-1\end{array}\!\!\right)$},
230%\bvec{\xi}^{(2)}=\mbox{\small$\left(\!\!\begin{array}{c}0\\0\\0\end{array}\!\!\right)$})
231%}{\sigma(\dots)+\sigma(\dots)}
232%\end{equation}
233%
234
235In general, the differential cross section is a linear function
236of the polarizations, i.e.
237\begin{eqnarray}
238  \frac{d\sigma(\bvec{\zeta}^{(1)},\bvec{\zeta}^{(2)},\bvec{\xi}^{(1)},\bvec{\xi}^{(2)})}{d\Omega} &=& 
239     \Phi_{(\zeta^{(1)},\zeta^{(2)})}   
240     + \bvec{A}_{(\zeta^{(1)},\zeta^{(2)})}   \cdot\bvec{\xi}^{(1)} 
241     + \bvec{B}_{(\zeta^{(1)},\zeta^{(2)})}   \cdot\bvec{\xi}^{(2)}   \nonumber\\
242    && \quad \quad \quad 
243     +\, {\bvec{\xi}^{(1)}}^T M_{(\zeta^{(1)},\zeta^{(2)})}    \,\bvec{\xi}^{(2)}
244\end{eqnarray}
245In this form, the mean polarization of the final state can be read off
246easily, and one obtains
247\begin{eqnarray}
248\langle\bvec{\xi}^{(1)}\rangle &=& \frac{1}{\Phi_{(\zeta^{(1)},\zeta^{(2)})}}
249 \bvec{A}_{(\zeta^{(1)},\zeta^{(2)})} \;\; \mbox{and} \\
250\langle\bvec{\xi}^{(2)}\rangle &=& \frac{1}{\Phi_{(\zeta^{(1)},\zeta^{(2)})}}
251 \bvec{B}_{(\zeta^{(1)},\zeta^{(2)})} \;.
252\end{eqnarray}
253
254Note, that the {\em mean} polarization states do not depend on the
255correlation matrix $M_{(\zeta^{(1)},\zeta^{(2)})}$. In order to account for
256correlation one has to generate  {\em single} particle Stokes
257vector explicitly, i.e.\ on an event by event basis. However, this
258implementation generates {\em mean} polarization states, and neglects
259correlation effects.
260
261%\newpage
262\subsection{Coordinate transformations}
263
264\begin{figure}[h!]
265\centerline{\includegraphics[width=8.cm]{electromagnetic/standard/plots/frames.eps}}
266\caption{\label{pol.interframe} 
267  The {\em interaction frame} and the {\em particle frames} for the
268  example of Compton scattering. The momenta of all participating
269  particle lie in the $x$-$z$-plane, the scattering plane. The
270  incoming photon gives the $z$ direction. The outgoing photon is
271  defined as {\em particle 1} and gives the $x$-direction, perpendicular to
272  the $z$-axis. The $y$-axis is then perpendicular to the scattering
273  plane and completes the definition of a right handed coordinate
274  system called {\em interaction frame}.
275  The {\em particle frame} is defined by the Geant4 routine   
276  {\tt G4ThreeMomemtum::rotateUz()}.} 
277\end{figure}
278
279Three different coordinate systems are used in the evaluation of
280polarization states:
281\begin{itemize}
282\item {\bf World frame}
283%\item[]
284
285The geometry of the target, and the momenta of all particles
286  in Geant4 are noted in the world frame $X$, $Y$, $Z$ (the {\em global
287  reference frame}, GRF). It is the basis of the calculation of any
288  other coordinate system.
289\item {\bf Particle frame}
290%\item[]
291
292Each particle is carrying its own coordinate system.
293  In this system the direction of motion coincides with the
294  $z$-direction. Geant4 provides a transformation from any particle
295  frame to the World frame by the method
296  {\tt G4ThreeMomemtum::rotateUz()}. Thus, the $y$-axis of the
297  {\em particle reference frame} (PRF) lies in the $X$-$Y$-plane of
298  the world frame.
299 
300  The Stokes vector of any moving particle is defined w.r.t. the
301  corresponding particle frame.
302  Particles at rest (e.g.\ electrons of a media) use the world frame as
303  particle frame.
304\item {\bf Interaction frame}
305%\item[]
306
307 For the evaluation of the polarization transfer another
308 coordinate system is used, defined by the scattering plane, cf.\
309fig.\ \ref{pol.interframe}. There the
310 $z$-axis is defined by the direction of motion of the incoming
311 particle. The scattering plane is spanned by the $z$-axis and the
312 $x$-axis, in a way, that the direction of {\em particle~1} has a
313 positive $x$ component. The definition of {\em particle~1} depends on
314 the process, for instance in Compton scattering, the outgoing photon
315 is referred as {\em particle~1}\footnote{Note, for an incoming
316   particle travelling on the $Z$-axis (of GRF), the $y$-axis of the PRF
317   of both outgoing particles is parallel to the $y$-axis of the
318   {\em interaction frame}.}.
319\end{itemize}
320
321All frames are right handed.
322
323
324\subsection{Polarized beam and material}
325
326Polarization of beam particles is well established. It can be used for
327simulating low-energy Compton scattering of linear polarized
328photons. The interpretation as Stokes vector allows now the usage in a
329more general framework.
330%
331The polarization state of a (initial) beam particle can be fixed
332using standard the ParticleGunMessenger class. For example, the class {\tt 
333G4ParticleGun} provides the method {\tt SetParticlePolarization()},
334which is usually accessable via
335\begin{verbatim}
336  /gun/polarization <Sx> <Sy> <Sz>
337\end{verbatim}
338in a macro file.
339
340In addition for the simulation of polarized media, a possibility
341to assign Stokes vectors to physical volumes is provided by a new
342class, the so-called {\em G4PolarizationManager}.   
343%It also provides some helper routines for the evaluation of Stokes
344%vectors in different frames of reference.
345%
346The procedure to assign a polarization vector to a media, is done
347during the {\em detector construction}. There the {\em
348logical volumes} with certain polarization are made known to
349{\em polarization manager}. One example {\tt DetectorConstruction}
350might look like follows:
351
352\begin{verbatim}
353  G4double Targetthickness = .010*mm;
354  G4double Targetradius    = 2.5*mm;
355
356  G4Tubs *solidTarget =
357    new G4Tubs("solidTarget",
358               0.0,
359               Targetradius,
360               Targetthickness/2,
361               0.0*deg,
362               360.0*deg );
363
364  G4LogicalVolume * logicalTarget =
365    new G4LogicalVolume(solidTarget,
366                        iron,
367                        "logicalTarget",
368                        0,0,0);
369
370  G4VPhysicalVolume *  physicalTarget =
371    new G4PVPlacement(0,G4ThreeVector(0.*mm, 0.*mm, 0.*mm),
372                      logicalTarget,
373                      "physicalTarget",
374                      worldLogical,
375                      false,
376                      0);
377
378  G4PolarizationManager * polMgr = G4PolarizationManager::GetInstance();
379  polMgr->SetVolumePolarization(logicalTarget,G4ThreeVector(0.,0.,0.08));
380\end{verbatim}
381Once a logical volume is known to the {\tt G4PolarizationManager}, its
382polarization vector can be accessed from a macro file by its name,
383e.g.\ the polarization of the logical volume called ``logicalTarget''
384can be changed via
385\begin{verbatim}
386  /polarization/volume/set logicalTarget 0. 0. -0.08
387\end{verbatim}
388Note, the polarization of a material is stated in the world frame.
389
390\subsection{Status of this document}
39120.11.06 created by A.Sch{\"a}licke\\
392
393\begin{latexonly}
394
395\begin{thebibliography}{10}
396
397\bibitem{polIntro:McMaster:1961}
398W.~H.~McMaster, Rev.\ Mod.\ Phys.\ {\bf 33} (1961) 8; and references therein.
399
400\bibitem{polIntro:Laihem:thesis}
401K.~Laihem, PhD thesis, Measurement of the positron polarization at an
402helical undulator based positron source for the International Linear
403Collider ILC, Humboldt University Berlin, Germany, (2008).
404
405
406%%EGS
407\bibitem{polIntro:Nelson:1985ec}
408W.~R.~Nelson, H.~Hirayama, D.~W.~O.\ Rogers,
409%``The Egs4 Code System,''
410SLAC-R-0265.
411
412\bibitem{polIntro:Floettmann:thesis}
413K.~Fl\"ottmann, PhD thesis, DESY Hamburg (1993); DESY-93-161.
414
415%kek extension
416\bibitem{polIntro:Namito:1993sv}
417Y.~Namito, S.~Ban, H.~Hirayama,
418%``Implementation of linearly polarized photon scattering into the EGS4 code,''
419Nucl.\ Instrum.\ Meth.\ A {\bf 332} (1993) 277.
420
421\bibitem{polIntro:Liu:2000ey}
422J.~C.~Liu, T.~Kotseroglou, W.~R.~Nelson, D.~C.~Schultz,
423%``Polarization study for NLC positron source using EGS4,''
424SLAC-PUB-8477.
425%Geant3
426\bibitem{polIntro:Brun:1985ps}
427R.~Brun, M.~Caillat, M.~Maire, G.~N.~Patrick, L.~Urban,
428%``The Geant3 Electromagnetic Shower Program And A Comparison With The Egs3
429%Code,''
430CERN-DD/85/1.
431
432%% E166
433\bibitem{polIntro:Alexander:2003fh}
434G.~Alexander {\it et al.},
435%``Undulator-based production of polarized positrons: A proposal for
436%  the  50-GeV beam in the FFTB,''
437SLAC-TN-04-018, SLAC-PROPOSAL-E-166.
438
439\bibitem{polIntro:Hoogduin:thesis}
440J.~Hoogduin, PhD thesis, Rijksuniversiteit Groningen (1997).
441
442\bibitem{polIntro:Stokes:1852}
443G.~Stokes,
444Trans.\ Cambridge Phil.\ Soc.\  {\bf 9} (1852) 399.
445
446
447\end{thebibliography}
448
449\end{latexonly}
450
451\begin{htmlonly}
452
453\begin{enumerate}{10}
454\item
455W.~H.~McMaster, Rev.\ Mod.\ Phys.\ {\bf 33} (1961) 8; and references therein.
456
457\item
458K.~Laihem, PhD thesis, Measurement of the positron polarization at an
459helical undulator based positron source for the International Linear
460Collider ILC, Humboldt University Berlin, Germany, (2008).
461
462
463%%EGS
464\item
465W.~R.~Nelson, H.~Hirayama, D.~W.~O.\ Rogers,
466%``The Egs4 Code System,''
467SLAC-R-0265.
468
469\item
470K.~Fl\"ottmann, PhD thesis, DESY Hamburg (1993); DESY-93-161.
471
472%kek extension
473\item
474Y.~Namito, S.~Ban, H.~Hirayama,
475%``Implementation of linearly polarized photon scattering into the EGS4 code,''
476Nucl.\ Instrum.\ Meth.\ A {\bf 332} (1993) 277.
477
478\item
479J.~C.~Liu, T.~Kotseroglou, W.~R.~Nelson, D.~C.~Schultz,
480%``Polarization study for NLC positron source using EGS4,''
481SLAC-PUB-8477.
482%Geant3
483\item
484R.~Brun, M.~Caillat, M.~Maire, G.~N.~Patrick, L.~Urban,
485%``The Geant3 Electromagnetic Shower Program And A Comparison With The Egs3
486%Code,''
487CERN-DD/85/1.
488
489%% E166
490\item
491G.~Alexander {\it et al.},
492%``Undulator-based production of polarized positrons: A proposal for
493%  the  50-GeV beam in the FFTB,''
494SLAC-TN-04-018, SLAC-PROPOSAL-E-166.
495
496\item
497J.~Hoogduin, PhD thesis, Rijksuniversiteit Groningen (1997).
498
499\item
500G.~Stokes,
501Trans.\ Cambridge Phil.\ Soc.\  {\bf 9} (1852) 399.
502
503\end{enumerate}
504
505\end{htmlonly}
506
507
508
509
510% ======================================================================
511\newcommand{\Mvariable}[1]{r_e}
512
513\newpage
514\section{Ionization}\label{sec:polarizedIonization}
515\subsection{Method}
516The class {\em G4ePolarizedIonization} provides continuous and
517discrete energy losses of polarized electrons and positrons in a
518material. It evaluates polarization transfer and -- if the material
519is polarized -- asymmetries in the explicit delta rays production.
520The implementation baseline follows the approach derived for the
521class {\em G4eIonization} described in sections             
522\ref{en_loss} and \ref{sec:em.eion}
523For continuous energy losses the effects of a polarized beam or
524target are negligible provided the separation cut $T_{\rm cut}$ is
525small, and are therefore not considered separately. On the other
526hand, in the explicit production of delta rays by M{\o}ller or
527Bhabha scattering, the effects of polarization on total cross
528section and mean free path, on distribution of final state particles
529and the average polarization of final state particles are taken into
530account.
531
532% ----------------------------------------------------------------------
533
534\subsection{Total cross section and mean free path}
535
536Kinematics of Bhabha and M{\o}ller scattering is fixed by initial
537energy
538\begin{equation}
539  \gamma=\frac{E_{k_1}}{m c^2}% =\frac{s}{2m^2}-1
540\end{equation}
541and variable
542\begin{equation}
543  \epsilon = \frac{E_{p_2}-m c^2}{E_{k_1}-m c^2},
544\end{equation}
545which is the part of kinetic energy of initial particle carried out by
546scatter. Lower kinematic limit for $\epsilon$ is $0$, but in order
547to avoid divergencies in both total and differential cross sections
548one sets
549\begin{equation}
550   \epsilon_{min}= x = \frac{T_{min}}{E_{k_1}-mc^2},
551\end{equation}
552where $T_{min}$ has meaning of minimal kinetic energy of secondary
553electron. And, $\epsilon_{\rm max}=1(1/2)$ for Bhabha(M{\o}ller)
554scatterings. 
555
556% ----------------------------------------------------------------------
557\subsubsection{Total M{\o}ller cross section}
558
559The total cross section of the polarized M{\o}ller scattering can be expressed as follows
560\begin{equation}\label{totalMoller}
561\sigma^M_{pol}=\frac{2\pi\gamma^2 r_e^2}{(\gamma-1)^2(\gamma+1)}\left[
562  \sigma^M_0 + \zeta_3^{(1)}\zeta_3^{(2)}\sigma^M_L
563            + \left(\zeta_1^{(1)}\zeta_1^{(2)}+\zeta_2^{(1)}\zeta_2^{(2)}\right)\sigma^M_T\right],
564\end{equation}
565  where the $r_e$ is classical electron radius, and
566\begin{eqnarray}
567\sigma^M_0&=&
568  - \frac{1}{1 - x} + \frac{1}{x} 
569  - \frac{{\left( \gamma - 1 \right)}^2}{{\gamma}^2} 
570    \left(\frac{1}{2} - x \right)
571  +  \frac{ 2 - 4\,\gamma }{2\,{\gamma}^2}
572 \,\ln \left(\frac{1-x}{x}\right)
573\nonumber\\
574\sigma^M_L&=&
575\frac{ \left( -3 + 2\,\gamma + {\gamma}^2 \right)
576      \,\left( 1 - 2\,x \right) }{2\, {\gamma}^2} 
577  + \frac{2\,\gamma\,\left( -1 + 2\,\gamma \right)}{2\,
578    {\gamma}^2} \,\ln \left(\frac{1-x}{x}\right)
579\nonumber\\
580\sigma^M_T&=&
581\frac{2\,\left( \gamma - 1 \right) \,\left( 2\,x  -1  \right)}{2\,{\gamma}^2}
582  + \frac{
583    \left( 1 - 3\,\gamma \right) }{2\,{\gamma}^2} \,\ln \left(\frac{1-x}{x}\right)
584\label{mollertotal}
585\end{eqnarray}
586
587% ----------------------------------------------------------------------
588\subsubsection{Total Bhabha cross section}
589
590The total cross section of the polarized Bhabha scattering can be expressed as follows
591\begin{equation}\label{totalBhabha}
592\sigma^B_{pol}=\frac{2\pi r_e^2}{\gamma-1}
593\left[
594\sigma^B_0 + \zeta_3^{(1)}\zeta_3^{(2)}\sigma^B_L + \left(\zeta_1^{(1)}\zeta_1^{(2)} + \zeta_2^{(1)}\zeta_2^{(2)}\right)\sigma^B_T
595\right],
596\end{equation}
597where
598\begin{eqnarray}
599\sigma^B_0&=&
600\frac{1 - x}{2\,\left( \gamma - 1 \right) \,x} +
601  \frac{2\,\left( -1 + 3\,x - 6\,x^2 + 4\,x^3 \right) }
602   {3\,{\left( 1 + \gamma \right) }^3}
603    \nonumber\\
604  &+&\frac{-1 - 5\,x + 12\,x^2 - 10\,x^3 + 4\,x^4}{2\,\left( 1 + \gamma \right) \,x}
605 + \frac{-3 - x + 8\,x^2 - 4\,x^3 - \ln (x)}{{\left( 1 + \gamma \right) }^2}
606    \nonumber\\
607  &+&\frac{3 + 4\,x - 9\,x^2 + 3\,x^3 - x^4 + 6\,x\,\ln (x)}{3\,x}
608    \nonumber\\
609  \sigma^B_L&=&
610\frac{2\,\left( 1 - 3\,x + 6\,x^2 - 4\,x^3 \right) }{3\,{\left( 1 + \gamma \right) }^3} +
611  \frac{-14 + 15\,x - 3\,x^2 + 2\,x^3 - 9\,\ln (x)}{3\,\left( 1 + \gamma \right) }
612\nonumber\\
613  &+&\frac{5 + 3\,x - 12\,x^2 + 4\,x^3 + 3\,\ln (x)}{3\,{\left( 1 + \gamma \right) }^2} +
614  \frac{7 - 9\,x + 3\,x^2 - x^3 + 6\,\ln (x)}{3}
615\nonumber\\
616\sigma^B_T&=&
617\frac{2\,\left( -1 + 3\,x - 6\,x^2 + 4\,x^3 \right) }{3\,{\left( 1 + \gamma \right) }^3} +
618  \frac{-7 - 3\,x + 18\,x^2 - 8\,x^3 - 3\,\ln (x)}{3\,{\left( 1 + \gamma \right) }^2}
619\nonumber\\
620  &+&\frac{5 + 3\,x - 12\,x^2 + 4\,x^3 + 9\,\ln (x)}{6\,\left( 1 + \gamma \right) }
621\end{eqnarray}
622
623% ----------------------------------------------------------------------
624\subsubsection{Mean free path}
625
626With the help of the total polarized  M{\o}ller cross section
627one can define a longitudinal asymmetry $A^M_L$ and the transverse
628asymmetry $A^M_T$, by
629
630\begin{tabular}{ccc}
631 $ A^M_L = \displaystyle \frac{\sigma^M_L}{\sigma^M_0\quad$ & and &
632 $\quad A^M_T = \displaystyle \frac{\sigma^M_T}{\sigma^M_0}\;$.
633\end{tabular}
634
635Similarly, using the polarized Bhabha cross section one can introduce a
636longitudinal asymmetry $A^B_L$ and the transverse asymmetry $A^B_T$
637via
638
639\begin{tabular}{ccc}
640 $ A^B_L = \displaystyle \frac{\sigma^B_L}{\sigma^B_0\quad$ & and &
641 $\quad A^B_T = \displaystyle \frac{\sigma^B_T}{\sigma^B_0}\;$.
642\end{tabular}
643
644These asymmetries are depicted in figures \ref{pol.moller1} and
645\ref{pol.bhabha1} respectively.
646
647If both beam and target are polarized the mean free path as defined in
648section \ref{sec:em.eion} has to be modified. In the class {\em
649G4ePolarizedIonization} the polarized mean free path $\lambda^{\rm
650pol}$ is derived from the unpolarized mean free path $\lambda^{\rm
651unpol}$ via
652\begin{equation}
653  \lambda^{\rm pol} = \frac{\lambda^{\rm unpol}}{1 +
654\zeta_3^{(1)}\zeta_3^{(2)}\, A_L +
655\left(\zeta_1^{(1)}\zeta_1^{(2)}+\zeta_2^{(1)}\zeta_2^{(2)}\right) \,A_T}
656\end{equation}
657
658%
659\begin{figure}[t]
660\begin{center}
661  \includegraphics[width=6.5cm]{electromagnetic/standard/plots/MollerTA1.eps}
662  \includegraphics[width=6.5cm]{electromagnetic/standard/plots/MollerTA2.eps}
663\end{center}
664\caption{\label{pol.moller1}M{\o}ller total cross section
665asymmetries depending on the total energy of the incoming
666electron, with a cut-off $T_{\rm cut}= 1 {\rm keV}$. Transverse
667asymmetry is plotted in blue, longitudinal asymmetry in red. Left
668part, between 0.5 MeV and 2 MeV, right part up to 10 MeV.}
669%\end{figure}   
670%
671%\begin{figure}[t]
672\begin{center}
673  \includegraphics[width=6.5cm]{electromagnetic/standard/plots/BhabhaTA1.eps}
674  \includegraphics[width=6.5cm]{electromagnetic/standard/plots/BhabhaTA2.eps}
675\end{center}
676\caption{\label{pol.bhabha1}Bhabha total cross section
677asymmetries depending on the total energy of the incoming
678positron, with a cut-off $T_{\rm cut}= 1 {\rm keV}$. Transverse
679asymmetry is plotted in blue, longitudinal asymmetry in red. Left
680part, between 0.5 MeV and 2 MeV, right part up to 10 MeV.}
681\end{figure}
682
683
684
685
686% ----------------------------------------------------------------------
687\subsection{Sampling the final state}
688
689\subsubsection{Differential cross section}
690
691The polarized differential cross section is rather complicated,
692the full result can be found in \cite{polIoni:Star:2006,polIoni:Ford:1957,polIoni:Stehle:1957}.
693In {\em G4PolarizedMollerCrossSection} the complete result is
694available taking all mass effects into account, only binding effects
695are neglected. 
696Here we state only the ultra-relativistic approximation (URA), to show
697the general dependencies.
698\begin{eqnarray}
699&&\frac{d\sigma_{URA}^M}{d\epsilon d\varphi}=
700\frac{{{r_\epsilon}}^2}{ \gamma + 1} \times
701\nonumber\\
702&&\Bigg[
703\frac{{\left( 1 - \epsilon + \epsilon^2 \right) }^2}{4\,{\left( \epsilon - 1 \right) }^2\,\epsilon^2} +
704\zeta_3^{(1)}\zeta_3^{(2)}\frac{2 - \epsilon +
705\epsilon^2}{-4\,\epsilon ( 1 - \epsilon)} +
706\left(\zeta_2^{(1)}\zeta_2^{(2)}  -\zeta_1^{(1)}\zeta_1^{(2)}\right)\frac{1}{4}
707\nonumber\\
708&&+
709  \left(\xi_3^{(1)}\zeta_3^{(1)} - \xi_3^{(2)}\zeta_3^{(2)}\right)
710\frac{1 - \epsilon  + 2\,\epsilon^2}{4\,\left( 1 -  \epsilon  \right) \,\epsilon^2}
711+ \left(\xi_3^{(2)}\zeta_3^{(1)} - \xi_3^{(1)}\zeta_3^{(2)}\right)
712\frac{2 - 3\,\epsilon + 2\,\epsilon^2}{4\,{\left( 1 - \epsilon \right) }^2\,\epsilon}
713   \Bigg] \nonumber\\
714&&
715\end{eqnarray}
716%
717The corresponding cross section for Bhabha cross section is
718implemented in  {\em G4PolarizedBhabhaCrossSection}. In the
719ultra-relativistic approximation it reads
720\begin{eqnarray}
721&&\frac{d\sigma_{URA}^B}{d\epsilon d\varphi}=
722\frac{{{r_\epsilon}}^2}{ \gamma - 1} \times
723\nonumber\\
724&&\Bigg[
725\frac{{\left( 1 - \epsilon + \epsilon^2 \right) }^2}{4\,\epsilon^2} +
726\zeta_3^{(1)}\zeta_3^{(2)}\frac{\left( \epsilon - 1 \right) \,\left( 2 - \epsilon + \epsilon^2 \right) }{4\,\epsilon}
727+\left(\zeta_2^{(1)}\zeta_2^{(2)}  -\zeta_1^{(1)}\zeta_1^{(2)}\right)\frac{(1-\epsilon)^2}{4}
728\nonumber\\
729&&+
730  \left(\xi_3^{(1)}\zeta_3^{(1)} - \xi_3^{(2)}\zeta_3^{(2)}\right)\frac{1 - 2\,\epsilon + 3\,\epsilon^2 - 2\,\epsilon^3}{4\,\epsilon^2}
731+ \left(\xi_3^{(2)}\zeta_3^{(1)} - \xi_3^{(1)}\zeta_3^{(2)}\right)\frac{ 2 - 3\,\epsilon + 2\,\epsilon^2}{4\epsilon}
732   \Bigg] \nonumber\\
733&&
734\end{eqnarray}
735where
736\begin{tabular}[t]{l@{\ = \ }l}
737$r_e$       & classical electron radius       \\
738$\gamma$    & $E_{k_1}/m_e c^2$ \\
739$\epsilon$  & ($E_{p_1}-m_e c^2)/(E_{k_1}-m_e c^2)$  \\                     
740$E_{k_1}$   & energy of the incident electron/positron   \\
741$E_{p_1}$   & energy of the scattered electron/positron  \\
742$m_e c^2$   & electron mass                   \\
743$\bvec{\zeta}^{(1)}$ & Stokes vector of the incoming electron/positron \\
744$\bvec{\zeta}^{(2)}$ & Stokes vector of the target electron \\
745$\bvec{\xi}^{(1)}$   & Stokes vector of the outgoing electron/positron \\
746$\bvec{\xi}^{(2)}$   & Stokes vector of the outgoing (2nd) electron .
747\end{tabular}
748
749\subsubsection{Sampling}
750
751The delta ray is sampled according to methods discussed in Chapter
7522. After exploitation of the symmetry in the M{\o}ller cross section
753under exchanging $\epsilon$ versus $(1-\epsilon)$, the differential
754cross section can be approximated by a simple function $f^M(\epsilon)$:
755\begin{equation}
756   f^M(\epsilon) = \frac{1}{\epsilon^2} \frac{\epsilon_0}{1-2\epsilon_0}
757\end{equation}
758with the kinematic limits given by
759\begin{equation}
760  \epsilon_0 = \frac{T_{\rm cut}}{E_{k_1}-m_e c^2} \le \epsilon \le
761\frac{1}{2}
762\end{equation}
763A similar function $f^B(\epsilon)$ can be found for Bhabha scattering:
764\begin{equation}
765   f^B(\epsilon) = \frac{1}{\epsilon^2} \frac{\epsilon_0}{1-\epsilon_0}
766\end{equation}
767with the kinematic limits given by
768\begin{equation}
769  \epsilon_0 = \frac{T_{\rm cut}}{E_{k_1}-m_e c^2} \le \epsilon \le 1
770\end{equation}
771
772The kinematic of the delta ray production is constructed by the
773following steps:
774\begin{enumerate}
775   \item $\epsilon$ is sampled from $f(\epsilon)$
776   \item calculate the differential cross section, depending on the
777         initial polarizations $\bvec{\zeta}^{(1)}$ and $\bvec{\zeta}^{(2)}$.
778   \item $\epsilon$ is accepted with the probability defined by ratio
779         of the differential cross section over the approximation
780         function.
781   \item The $\varphi$ is diced uniformly.
782   \item $\varphi$ is determined from the differential cross section,
783         depending on the initial polarizations $\bvec{\zeta}^{(1)}$ and $\bvec{\zeta}^{(2)}$
784\end{enumerate}
785Note, for initial states without transverse polarization components, the
786$\varphi$ distribution is always uniform.
787In figure \ref{pol.moller2} the asymmetries indicate the influence of
788polarization. In general the effect is largest around
789$\epsilon=\frac{1}{2}$.
790%
791%\begin{figure}[ht]
792%\includegraphics[scale=0.5]{electromagnetic/standard/plots/MollerXS.eps}
793%\caption{M{\o}ller differential cross section in arbitrary units. Black - unpolarized, Red - (+-),Blue (++).
794%This cross section is symmetric around point $\epsilon=1/2$.
795%}
796%\end{figure}
797%\begin{figure}[ht]
798%\includegraphics[scale=0.5]{electromagnetic/standard/plots/BhabhaXS.eps}
799%\caption{Bhabha differential cross section in arbitrary units. Black - unpolarized, Red - (+-),Blue (++)}
800%\end{figure}
801%
802\begin{figure}[ht]
803\begin{center}
804\includegraphics[width=6.5cm]{electromagnetic/standard/plots/MollerAsym.eps}
805\includegraphics[width=6.5cm]{electromagnetic/standard/plots/BhabhaAsym.eps}
806\end{center}
807%\caption{M{\o}ller differential cross section asymmetries in\%.
808%Red - ZZ, Gren - XX, Blue - YY, LightBlue -ZX}
809\caption{\label{pol.moller2}Differential cross section asymmetries in\% for M{\o}ller
810(left) and Bhabha (right) scattering ( red - $A_{ZZ}(\epsilon)$,
811 green - $A_{XX}(\epsilon)$, blue - $A_{YY}(\epsilon)$, lightblue - $A_{ZX}(\epsilon)$)}
812\end{figure}
813
814After both $\phi$ and $\epsilon$ are known, the kinematic can be
815constructed fully. Using momentum conservation the momenta of the
816scattered incident particle and the ejected electron are constructed
817in global coordinate system.
818
819\subsubsection{Polarization transfer}
820
821After the kinematics is fixed the polarization properties of the
822outgoing particles are determined. Using the dependence of
823the differential cross section on the final state polarization a mean
824polarization is calculated according to method described in section
825\ref{sec:pol.intro}.
826
827The resulting polarization transfer functions $\xi^{(1,2)}_3(\epsilon)$
828are depicted in figures \ref{pol.moller3} and \ref{pol.bhabha3}.
829
830\begin{figure}[ht]
831\includegraphics[width=6.5cm]{electromagnetic/standard/plots/MollerTransfer1.eps}
832\includegraphics[width=6.5cm]{electromagnetic/standard/plots/MollerTransfer2.eps}
833\caption{\label{pol.moller3}Polarization transfer functions in
834M{\o}ller scattering. Longitudinal polarization
835$\xi^{(2)}_3$ of electron with energy $E_{p_2}$ in blue; longitudinal
836polarization $\xi^{(1)}_3$ of second electron in red. Kinetic energy of incoming electron $T_{k_1} = 10 {\rm MeV}$}.
837\end{figure}
838
839\begin{figure}[ht]
840\includegraphics[width=6.5cm]{electromagnetic/standard/plots/BhabhaTransfer1.eps}
841\includegraphics[width=6.5cm]{electromagnetic/standard/plots/BhabhaTransfer2.eps}
842\caption{\label{pol.bhabha3}Polarization Transfer in Bhabha scattering.
843Longitudinal polarization
844$\xi^{(2)}_3$ of electron with energy $E_{p_2}$ in blue; longitudinal
845polarization $\xi^{(1)}_3$ of scattered positron. Kinetic energy of incoming positron $T_{k_1} = 10 {\rm MeV}$}.
846\end{figure}
847
848% ----------------------------------------------------------------------
849\subsection{Status of this document}
85020.11.06 created by P.Starovoitov\\
85121.02.07 minor update by A.Sch{\"a}licke\\
852
853\begin{latexonly}
854
855\begin{thebibliography}{9}
856\bibitem{polIoni:Star:2006} P.~Starovoitov {\em et.al.}, in preparation.
857\bibitem{polIoni:Ford:1957}
858G.~W.~Ford, C.~J.~Mullin,
859Phys.~Rev.\ {\bf 108} (1957) 477.
860\bibitem{polIoni:Stehle:1957}
861P.~Stehle,
862Phys.~Rev.\ {\bf 110} (1958) 1458.
863
864\end{thebibliography}
865
866\end{latexonly}
867
868\begin{htmlonly}
869
870\subsection{Bibliography}
871\begin{enumerate}
872\item %{Star:2006}
873 P.~Starovoitov {\em et.al.}, in preparation.
874\item %{Ford:1957}
875G.~W.~Ford, C.~J.~Mullin,
876Phys.~Rev.\ {\bf 108} (1957) 477.
877\item % {Stehle:1957}
878P.~Stehle,
879Phys.~Rev.\ {\bf 110} (1958) 1458.
880\end{enumerate}
881
882\end{htmlonly}
883
884
885\clearpage
886% ======================================================================
887\section{Positron - Electron Annihilation}
888\subsection{Method}
889The class {\em G4eplusPolarizedAnnihilation} simulates
890annihilation of polarized positrons with electrons in a material.
891The implementation baseline follows the approach derived for the class
892{\em  G4eplusAnnihilation} described in section
893\ref{sec:em.annil}.
894It evaluates polarization transfer and -- if the material is polarized --
895asymmetries in the produced photons. Thus, it takes the effects of
896polarization on total cross section and mean free path, on
897distribution of final state photons into account. And
898calculates the average polarization of these generated photons.
899The material electrons are assumed to be free and at rest.
900
901\subsection{Total cross section and mean free path}
902Kinematics of annihilation process is fixed by initial energy
903\begin{equation}
904\gamma=\frac{E_{k_1}}{mc^2}%=\frac{s}{2(mc^2)^2}-1
905\end{equation}
906and variable
907\begin{equation}
908\epsilon = \frac{E_{p_1}}{E_{k_1}+mc^2},
909\end{equation}
910which is the part of total energy available in initial state carried out by first photon.
911This variable has the following kinematical limits
912\begin{equation}
913\frac{1}{2}\left(1-\sqrt{\frac{\gamma-1}{\gamma+1}}\right)\;<\;
914\epsilon
915\;<\;\frac{1}{2}\left(1+\sqrt{\frac{\gamma-1}{\gamma+1}}\right)
916\;.
917\end{equation}
918
919% ----------------------------------------------------------------------
920\subsubsection{Total Cross Section}
921The total cross section of the annihilation of a polarized $e^+e^-$
922pair into two photons could be expressed as follows
923\begin{equation}\label{totalAnnih}
924\sigma^A_{pol}=\frac{\pi r_e^2}{\gamma+1}\left[
925\sigma^A_0 + \zeta_3^{(1)}\zeta_3^{(2)}\sigma^A_L + \left(\zeta_1^{(1)}\zeta_1^{(2)}+\zeta_2^{(1)}\zeta_2^{(2)}\right)\sigma^A_T\right],
926\end{equation}
927where
928\renewcommand{\Mvariable}[1]{\gamma}
929\begin{equation}
930\sigma^A_0=
931\frac{- \left( 3 + \Mvariable{gam} \right) \,{\sqrt{-1 + {\Mvariable{gam}}^2}}   +
932    \left( 1 + \Mvariable{gam}\,\left( 4 + \Mvariable{gam} \right\right) \,
933     \ln (\Mvariable{gam} + {\sqrt{-1 + {\Mvariable{gam}}^2}})}{4\,
934    \left( {\Mvariable{gam}}^2 - 1 \right) }
935\end{equation}
936\begin{equation}
937\sigma^A_L=
938\frac{- {\sqrt{-1 + {\Mvariable{gam}}^2}}\,
939       \left( 5 + \Mvariable{gam}\,\left( 4 + 3\,\Mvariable{gam} \right\right)    +
940    \left( 3 + \Mvariable{gam}\,\left( 7 + \Mvariable{gam} + {\Mvariable{gam}}^2 \right\right) \,
941     \ln (\Mvariable{gam} + {\sqrt{{\Mvariable{gam}}^2-1 }})}{4\,
942    {\left( \Mvariable{gam} -1\right) }^2\,\left( 1 + \Mvariable{gam} \right) }
943\end{equation}
944\begin{equation}
945\sigma^A_T=
946\frac{\left( 5 + \Mvariable{gam} \right) \,{\sqrt{-1 + {\Mvariable{gam}}^2}} -
947    \left( 1 + 5\,\Mvariable{gam} \right) \,\ln (\Mvariable{gam} + {\sqrt{-1 + {\Mvariable{gam}}^2}})}
948    {4\,{\left( -1 + \Mvariable{gam} \right) }^2\,\left( 1 + \Mvariable{gam} \right) }
949\end{equation}
950
951
952\subsubsection{Mean free path}
953
954With the help of the total polarized annihilation cross section
955one can define a longitudinal asymmetry $A^A_L$ and the transverse
956asymmetry $A^A_T$, by
957
958\begin{tabular}{ccc}
959 $ A^A_L = \displaystyle \frac{\sigma^A_L}{\sigma^A_0\quad$ & and &
960 $\quad A^A_T = \displaystyle \frac{\sigma^A_T}{\sigma^A_0}\;$.
961\end{tabular}
962
963These asymmetries are depicted in figure \ref{pol.annihi1}.
964
965If both incident positron and target electron are polarized the mean
966free path as defined in section \ref{sec:em.annil} has to be
967modified. The polarized mean free path $\lambda^{\rm pol}$ is derived
968from the unpolarized mean free path $\lambda^{\rm unpol}$ via
969\begin{equation}
970  \lambda^{\rm pol} = \frac{\lambda^{\rm unpol}}{1 +
971\zeta_3^{(1)}\zeta_3^{(2)}\, A_L +
972\left(\zeta_1^{(1)}\zeta_1^{(2)}+\zeta_2^{(1)}\zeta_2^{(2)}\right) \,A_T}
973\end{equation}
974
975\begin{figure}[ht]
976\begin{center}
977\includegraphics[width=6.5cm]{electromagnetic/standard/plots/AnnihTA1.eps}
978\includegraphics[width=6.5cm]{electromagnetic/standard/plots/AnnihTA2.eps}
979\end{center}
980\caption{\label{pol.annihi1}Annihilation total cross section asymmetries depending on the
981total energy of the incoming positron $E_{k_1}$. The transverse asymmetry
982is shown in blue, the longitudinal asymmetry in red. } 
983\end{figure}
984
985\clearpage
986
987% ----------------------------------------------------------------------
988\subsection{Sampling the final state}
989\subsubsection{Differential Cross Section}
990The fully polarized differential cross section is implemented in the
991class {\em G4PolarizedAnnihilationCrossSection}, which takes all mass
992effects into account, but binding effects are neglected \cite{polAnnihi:Star:2006,polAnnihi:Page:1957}
993In the ultra-relativistic approximation (URA) and concentrating on
994longitudinal polarization states only the cross section is
995rather simple:
996\begin{eqnarray}
997\frac{d\sigma_{URA}^A}{d\epsilon d\varphi} & = &
998\frac{{{r_e}}^2}{ \gamma - 1}  \times 
999\Bigg(
1000\frac{1 - 2\,\epsilon + 2\,\epsilon^2}{8\,\epsilon - 8\,\epsilon^2}\left(1 + \zeta_3^{(1)}\zeta_3^{(2)}\right)
1001\nonumber\\
1002&&\quad\quad
1003+ \frac{ \left( 1 - 2\,\epsilon \right) \,\left( \zeta _{3}^{(1)} + \zeta _{3}^{(2)} \right) \,
1004      \left( \xi _{3}^{(1)} - \xi _{3}^{(2)} \right}{8\,\left( \epsilon -1  \right) \,\epsilon}
1005         \Bigg)
1006\end{eqnarray}
1007%
1008where
1009\begin{tabular}[t]{l@{\ = \ }l}
1010$r_e$       & classical electron radius       \\
1011$\gamma$    & $E_{k_1}/m_e c^2$ \\
1012$E_{k_1}$   & energy of the incident positron   \\
1013$m_e c^2$   & electron mass                   \\
1014$\bvec{\zeta}^{(1)}$ & Stokes vector of the incoming positron \\
1015$\bvec{\zeta}^{(2)}$ & Stokes vector of the target electron \\
1016$\bvec{\xi}^{(1)}$   & Stokes vector of the 1st photon \\
1017$\bvec{\xi}^{(2)}$   & Stokes vector of the 2nd photon .
1018\end{tabular}
1019%
1020\begin{figure}[ht]
1021\begin{center}
1022  \includegraphics[width=9.5cm]{electromagnetic/standard/plots/AnnihXS.eps}
1023\end{center}
1024\caption{Annihilation differential cross section in arbitrary
1025units. Black line corresponds to unpolarized cross section;
1026red line -- to the antiparallel spins of initial particles, and blue line -- to the parallel spins.
1027Kinetic energy of the incoming positron $T_{k_1} = 10 {\rm MeV}$.}
1028\end{figure}
1029
1030\subsubsection{Sampling}
1031
1032The photon energy is sampled according to methods discussed in Chapter
10332. After exploitation of the symmetry in the Annihilation cross section
1034under exchanging $\epsilon$ versus $(1-\epsilon)$, the differential
1035cross section can be approximated by a simple function $f(\epsilon)$:
1036\begin{equation}
1037   f(\epsilon) = \frac{1}{\epsilon}
1038\ln^{-1}\left(\frac{\epsilon_{\rm max}}{\epsilon_{\rm min}}\right)
1039\end{equation}
1040with the kinematic limits given by
1041\begin{eqnarray}
1042\epsilon_{\rm min} &=&
1043\frac{1}{2}\left(1-\sqrt{\frac{\gamma-1}{\gamma+1}}\right)\;, \nonumber\\
1044\epsilon_{\rm max} &=&
1045\frac{1}{2}\left(1+\sqrt{\frac{\gamma-1}{\gamma+1}}\right)
1046\;.
1047\end{eqnarray}
1048
1049The kinematic of the two photon final state is constructed by the
1050following steps:
1051\begin{enumerate}
1052   \item $\epsilon$ is sampled from $f(\epsilon)$
1053   \item calculate the differential cross section, depending on the
1054         initial polarizations $\bvec{\zeta}^{(1)}$ and $\bvec{\zeta}^{(2)}$.
1055   \item $\epsilon$ is accepted with the probability defined by the ratio
1056         of the differential cross section over the approximation
1057         function  $f(\epsilon)$.
1058   \item The $\varphi$ is diced uniformly.
1059   \item $\varphi$ is determined from the differential cross section,
1060         depending on the initial polarizations $\bvec{\zeta}^{(1)}$ and $\bvec{\zeta}^{(2)}$.
1061\end{enumerate}
1062A short overview over the sampling method is given in Chapter 2.
1063In figure \ref{pol.annihi2} the asymmetries indicate the influence of
1064polarization for an 10MeV incoming positron. The actual behavior is
1065very sensitive to the energy of the incoming positron.
1066
1067
1068\begin{figure}[ht]
1069\includegraphics[scale=0.5]{electromagnetic/standard/plots/AnnihAsym.eps}
1070\caption{\label{pol.annihi2}Annihilation differential cross section
1071asymmetries in\%.
1072 Red line corrsponds to $A_{ZZ}(\epsilon)$, green line -- $A_{XX}(\epsilon)$,
1073 blue line -- $A_{YY}(\epsilon)$, lightblue line -- $A_{ZX}(\epsilon)$).
1074 Kinetic energy of the incoming positron $T_{k_1} = 10 {\rm MeV}$.}
1075\end{figure}
1076
1077\subsubsection{Polarization transfer}
1078
1079After the kinematics is fixed the polarization of the
1080outgoing photon is determined. Using the dependence of
1081the differential cross section on the final state polarizations a mean
1082polarization is calculated for each photon according to method
1083described in section \ref{sec:pol.intro}.
1084
1085The resulting polarization transfer functions $\xi^{(1,2)}(\epsilon)$
1086are depicted in figure \ref{pol.annihi3}.
1087
1088\begin{figure}[ht]
1089\includegraphics[width=6.5cm]{electromagnetic/standard/plots/AnnihTransfer1.eps}
1090\includegraphics[width=6.5cm]{electromagnetic/standard/plots/AnnihTransfer2.eps}
1091\caption{\label{pol.annihi3}
1092Polarization Transfer in annihilation process.
1093Blue line corresponds to the circular polarization $\xi_3^{(1)}$ of the photon with energy $m(\gamma + 1)\epsilon$;
1094red line -- circular polarization $\xi_3^{(2)}$ of the photon photon with energy $m(\gamma + 1)(1-\epsilon)$.}
1095\end{figure}
1096
1097\subsection{Annihilation at Rest}
1098
1099The method \verb!AtRestDoIt! treats the special case where a positron
1100comes to rest before annihilating. It generates two photons, each with
1101energy $E_{p_{1/2}}=m c^2$ and an isotropic angular distribution.
1102%Eventhough the asymmetry for annihilation at rest is 100\% (cf.\
1103%figure \ref{pol.annihi1}), there are always unpolarized electrons in
1104%the a material.
1105Starting with the differential cross section for annihilation with
1106positron and electron spins opposed and parallel,
1107respectively,\cite{polAnnihi:Page:1957} 
1108\begin{eqnarray}
1109 d\sigma_1 &=& \sim \frac{(1 - \beta^2) + \beta^2 (1 - \beta^2) (1 -
1110\cos^2\theta)^2}{(1 - \beta^2\cos^2\theta)^2} d \cos\theta \\
1111 d\sigma_2 &=& \sim \frac{\beta^2(1 -
1112\cos^4\theta)}{(1 - \beta^2\cos^2\theta)^2} d \cos\theta 
1113\end{eqnarray}
1114In the limit $\beta\to0$ the cross section $d\sigma_1$ becomes one,
1115and the cross section $d\sigma_2$ vanishes. For the opposed spin
1116state, the total angular
1117momentum is zero and we have a uniform photon distribution. For the
1118parallel case the total angular momentum is 1. Here the two photon
1119final state is forbidden by angular momentum conservation, and it can
1120be assumed that higher order processes (e.g.\ three photon final
1121state) play a dominant role. However, in reality 100\% polarized
1122electron targets do not exist, consequently there are always electrons
1123with opposite spin, where the positron can annihilate with.
1124% Leading again to a uniform distribution.
1125Final state polarization does not play a role for the decay products
1126of a spin zero state, and can be safely neglected. (Is set to zero)
1127
1128\subsection{Status of this document}
112920.11.06 created by P.Starovoitov\\
113021.02.07 minor update by A.Sch{\"a}licke\\
1131
1132\begin{latexonly}
1133
1134\begin{thebibliography}{9}
1135\bibitem{polAnnihi:Star:2006} P.~Starovoitov {\em et.al.}, in preparation.
1136\bibitem{polAnnihi:Page:1957}
1137L.~A.~Page,
1138%Polarization Effects in the Two-Quantum Annihilation of Positrons
1139Phys.~Rev.\ {\bf 106} (1957) 394-398.
1140\end{thebibliography}
1141
1142\end{latexonly}
1143
1144\begin{htmlonly}
1145
1146\subsection{Bibliography}
1147\begin{enumerate}
1148\item P.~Starovoitov {\em et.al.}, in preparation.
1149\item L.~A.~Page,
1150%Polarization Effects in the Two-Quantum Annihilation of Positrons
1151Phys.~Rev.\ {\bf 106} (1957) 394-398.
1152\end{enumerate}
1153
1154\end{htmlonly}
1155
1156% ======================================================================
1157\clearpage
1158\section{Polarized Compton scattering}
1159\subsection{Method}
1160The class {\em G4PolarizedCompton}  simulates
1161Compton scattering of polarized photons with (possibly polarized)
1162electrons in a material. The implementation follows the approach
1163described for the class {\em G4ComptonScattering} introduced
1164in section \ref{sec:em.compton}.
1165Here the explicit production of a Compton scattered photon and the
1166ejected electron is considered taking the effects of polarization on
1167total cross section and mean free path as well as on the distribution
1168of final state particles into account. Further the average
1169polarizations of the scattered photon and electron are calculated.
1170The material electrons are assumed to be free and at rest.
1171
1172\subsection{Total cross section and mean free path}
1173
1174Kinematics of the Compton process is fixed by the initial energy
1175\begin{equation}
1176X=\frac{E_{k_1}}{mc^2}
1177\end{equation}
1178and the variable
1179\begin{equation}
1180\epsilon = \frac{E_{p_1}}{E_{k_1}},
1181\end{equation}
1182which is the part of total energy avaible in initial state carried out
1183by scattered photon, and the scattering angle
1184\begin{equation}
1185\cos{\theta} = 1 - \frac{1}{X}\left(\frac{1}{\epsilon} - 1\right)
1186\end{equation}
1187The variable $\epsilon$ has the following limits:
1188\begin{equation}
1189\frac{1}{1+2X} \;<\;  \epsilon  \;<\;1
1190\end{equation}
1191
1192
1193% ----------------------------------------------------------------------
1194\subsubsection{Total Cross Section}
1195The total cross section of Compton scattering reads
1196\begin{equation}
1197\sigma^{C}_{pol}=
1198%\frac{\pi \,{{r_e}}^2}{4\,X^2\,{\left( 1 + 2\,X \right) }^2}
1199\frac{\pi \,{{r_e}}^2}{X^2\,{\left( 1 + 2\,X \right) }^2}
1200\left[\sigma^{C}_0 + \zeta^{(1)}_3\zeta^{(2)}_3 \sigma^{C}_L\right]
1201\end{equation}
1202where
1203\begin{equation}
1204\sigma^{C}_0 = \frac{2\,X\,\left( 2 + X\,\left( 1 + X \right) \,\left( 8 + X \right\right)  -
1205    {\left( 1 + 2\,X \right) }^2\,\left( 2 + \left( 2 - X \right) \,X \right) \,
1206     \ln (1 + 2\,X)}{X}
1207\end{equation}
1208and
1209\begin{equation}
1210\sigma^{C}_L = 2\,X\,\left( 1 + X\,\left( 4 + 5\,X \right\right)  -
1211    \left( 1 + X \right) \,{\left( 1 + 2\,X \right) }^2\,\ln (1 + 2\,X)
1212\end{equation}
1213
1214\begin{figure}[ht]
1215\includegraphics[width=6.5cm]{electromagnetic/standard/plots/ComptonTA1.eps}
1216\includegraphics[width=6.5cm]{electromagnetic/standard/plots/ComptonTA2.eps}
1217\caption{\label{pol.compton1}Compton total cross section asymmetry depending on the energy of incoming photon.
1218Left part, between $0$ and $\sim 1$ MeV, right part -- up to 10MeV. }
1219\end{figure}
1220
1221
1222\subsubsection{Mean free path}
1223When simulating the Compton scattering of a photon with an atomic
1224electron, an empirical cross section formula is used, which reproduces
1225the cross section data down to 10 keV (see section
1226\ref{sec:em.compton}). If both, beam and target, are polarized this
1227mean free path has to be corrected.
1228
1229In the class {\em G4ComptonScattering} the polarized mean free path
1230$\lambda^{\rm  pol}$ is defined on the basis of the the unpolarized
1231mean free path $\lambda^{\rm unpol}$ via
1232\begin{equation}
1233  \lambda^{\rm pol} = \frac{\lambda^{\rm unpol}}{1 +
1234\zeta_3^{(1)}\zeta_3^{(2)}\, A^C_L }
1235\end{equation}
1236where
1237\begin{equation}
1238 A^C_L = \displaystyle \frac{\sigma^A_L}{\sigma^A_0} 
1239\end{equation}
1240is the expected asymmetry from the the total polarized Compton
1241cross section given above.
1242This asymmetry is depicted in figure \ref{pol.compton1}.
1243
1244
1245% ----------------------------------------------------------------------
1246\subsection{Sampling the final state}
1247\subsubsection{Differential Compton Cross Section}
1248
1249In the ultra-relativistic approximation the dependence of the
1250differential cross section on the longitudinal/circular degree of
1251polarization is very simple. It reads
1252\begin{eqnarray}
1253&&\frac{d\sigma_{URA}^C}{de d\varphi}=
1254%\frac{{{r_e}}^2 \,Z}{ 4X}
1255\frac{{{r_e}}^2 }{ X}
1256\Bigg(
1257\frac{\epsilon^2 + 1}{2\,\epsilon} +
1258\frac{ \epsilon^2  -1  }{2\,\epsilon} \left(\zeta_3^{(1)}\zeta_3^{(2)} +
1259 \zeta _{3}^{(2)}\,\xi _{3}^{(1)} - \zeta _{3}^{(1)}\,\xi _{3}^{(2)}\right)
1260\nonumber\\
1261&&+\frac{\epsilon^2 + 1}{2\,\epsilon}   \left( \zeta _{3}^{(1)}\,\xi _{3}^{(1)} - \zeta _{3}^{(2)}  \,\xi _{3}^{(2)} \right)
1262   \Bigg)
1263\end{eqnarray}
1264where
1265\begin{tabular}[t]{l@{\ = \ }l}
1266$r_e$       & classical electron radius       \\
1267$X$         & $E_{k_1}/m_e c^2$ \\
1268$E_{k_1}$   & energy of the incident photon   \\
1269$m_e c^2$   & electron mass                   \\
1270\end{tabular}
1271
1272The fully polarized differential cross section is available in the class {\em 
1273G4PolarizedComptonCrossSection}. It takes all mass effects into
1274account, but binding effects are neglected \cite{polCompt:Star:2006,polCompt:Lipps:1954}
1275The cross section dependence on $\epsilon$ for right handed circularly polarized
1276photons and longitudinally polarized electrons is plotted in figure \ref{pol.compton2a}
1277%
1278\begin{figure}
1279\includegraphics[scale=0.5]{electromagnetic/standard/plots/ComptonXS.eps}
1280\caption{\label{pol.compton2a}
1281Compton scattering differential cross section in arbitrary
1282units. Black line corresponds to the unpolarized cross section;
1283red line -- to the antiparallel spins of initial particles, and blue line -- to the parallel spins.
1284Energy of the incoming photon $E_{k_1} = 10 {\rm MeV}$.
1285}
1286\end{figure}
1287%
1288\begin{figure}
1289\includegraphics[scale=0.5]{electromagnetic/standard/plots/ComptonAsym.eps}
1290\caption{\label{pol.compton2}Compton scattering differential cross section asymmetries in\%.
1291Red line corresponds to the asymmetry due to circular photon and longitudinal electron initial state polarization,
1292green line -- due to circular photon and transverse electron initial state polarization,
1293blue line -- due to linear photon and transverse electron initial state polarization.}
1294\end{figure}
1295
1296
1297\subsubsection{Sampling}
1298
1299The photon energy is sampled according to methods discussed in Chapter
13002. The differential cross section can be approximated by a simple
1301function $\Phi(\epsilon)$:
1302\begin{equation}
1303   \Phi(\epsilon) = \frac{1}{\epsilon} + \epsilon
1304\end{equation}
1305with the kinematic limits given by
1306\begin{eqnarray}
1307 \epsilon_{\rm min} &=& \frac{1}{1+2X} \\ 
1308 \epsilon_{\rm max} &=& 1
1309\end{eqnarray}
1310
1311
1312
1313
1314The kinematic of the scattered photon is constructed by the
1315following steps:
1316\begin{enumerate}
1317   \item $\epsilon$ is sampled from $\Phi(\epsilon)$
1318   \item calculate the differential cross section, depending on the
1319         initial polarizations $\bvec{\zeta}^{(1)}$ and $\bvec{\zeta}^{(2)}$, which
1320         the correct normalization.
1321   \item $\epsilon$ is accepted with the probability defined by ratio
1322         of the differential cross section over the approximation
1323         function.
1324   \item The $\varphi$ is diced uniformly.
1325   \item $\varphi$ is determined from the differential cross section,
1326         depending on the initial polarizations $\bvec{\zeta}^{(1)}$ and $\bvec{\zeta}^{(2)}$.
1327\end{enumerate}
1328In figure \ref{pol.compton2} the asymmetries indicate the influence of
1329polarization for an 10MeV incoming positron. The actual behavior is
1330very sensitive to energy of the incoming positron.
1331
1332\subsubsection{Polarization transfer}
1333
1334After the kinematics is fixed the polarization of the
1335outgoing photon is determined. Using the dependence of
1336the differential cross section on the final state polarizations a mean
1337polarization is calculated for each photon according to the method
1338described in section \ref{sec:pol.intro}.
1339
1340The resulting polarization transfer functions $\xi^{(1,2)}(\epsilon)$
1341are depicted in figure \ref{pol.compton3}.
1342
1343\begin{figure}[ht]
1344\includegraphics[width=6.5cm]{electromagnetic/standard/plots/ComptonTransfer1.eps}
1345\includegraphics[width=6.5cm]{electromagnetic/standard/plots/ComptonTransfer2.eps}
1346\caption{\label{pol.compton3} Polarization Transfer in Compton scattering.
1347Blue line corresponds to the longitudinal polarization $\xi_3^{(2)}$ of the electron,
1348red line -- circular polarization $\xi_3^{(1)}$ of the photon.}
1349\end{figure}
1350
1351\subsection{Status of this document}
135220.11.06 created by P.Starovoitov\\
135321.02.07 corrected cross section and some minor update by A.Sch{\"a}licke\\
1354
1355\begin{latexonly}
1356
1357\begin{thebibliography}{9}
1358\bibitem{polCompt:Star:2006} P.~Starovoitov {\em et.al.}, in preparation.
1359%\bibitem{polCompt:Stokes:1852}
1360%G.~Stokes, Trans.\ Cambridge Phil.\ Soc.\  {\bf 9} (1852) 399.
1361%
1362%\bibitem{polCompt:McMaster:1961}
1363%W.~H.~McMaster, Rev.\ Mod.\ Phys.\ {\bf 33} (1961) 8; and references therein.
1364\bibitem{polCompt:Lipps:1954}
1365F.W.~Lipps, H.A.~Tolhoek,
1366%Polarization Phenomena of Electrons and Photons I,
1367Physica {\bf 20}  (1954) 85;
1368F.W.~Lipps, H.A.~Tolhoek,
1369%Polarization Phenomena of Electrons and Photons II,
1370Physica {\bf 20} (1954) 395.
1371
1372\end{thebibliography}
1373
1374\end{latexonly}
1375
1376\begin{htmlonly}
1377
1378\subsection{Bibliography}
1379\begin{enumerate}
1380\item P.~Starovoitov {\em et.al.}, in preparation.
1381\item
1382F.W.~Lipps, H.A.~Tolhoek,
1383%Polarization Phenomena of Electrons and Photons I,
1384Physica {\bf 20}  (1954) 85;
1385F.W.~Lipps, H.A.~Tolhoek,
1386%Polarization Phenomena of Electrons and Photons II,
1387Physica {\bf 20} (1954) 395.
1388\end{enumerate}
1389
1390\end{htmlonly}
1391
1392
1393\newpage
1394\section{Polarized Bremsstrahlung for electron and positron}\label{sec:pol.bremsstrahlung}
1395\subsection{Method}
1396
1397The polarized version of Bremsstrahlung is based on the unpolarized
1398cross section. Energy loss, mean free path, and distribution of
1399explicitly generated final state particles are treated by the
1400unpolarized version {\em G4eBremsstrahlung}. For details consult
1401section \ref{sec:em.ebrem}.
1402
1403The remaining task is to attribute polarization vectors to the
1404generated final state particles, which is discussed in the following.
1405
1406\subsection{Polarization in gamma conversion and brems\-strahlung}
1407
1408Gamma conversion and bremsstrahlung are cross-symmetric processes
1409(i.e. the Feynman diagram for electron bremsstrahlung can be obtained
1410from the gamma conversion diagram by flipping the incoming photon and
1411outgoing positron lines) and their cross sections closely related. For
1412both processes, the interaction occurs in the field of the nucleus and
1413the total and differential cross section are polarization
1414independent. Therefore, only the polarization transfer from the
1415polarized incoming particle to the outgoing particles is taken into
1416account. 
1417%
1418\begin{figure}[htb]
1419\begin{center}
1420 \includegraphics [scale=.33] {electromagnetic/standard/plots/Fyn_diag.eps}
1421 \caption {Feynman diagrams of Gamma conversion and bremsstrahlung processes.}
1422\end{center}
1423\end{figure}
1424
1425
1426\noindent
1427For both processes, the scattering can be formulated by:
1428\begin{equation}
1429    \mathcal{K}_{1}(k_{1},\bvec{\zeta}^{(1)}) + \mathcal{N}_{1}(k_{\mathcal
1430{N}_{1}}, \bvec{\zeta}^{(\mathcal {N}_{1})})
1431    \longrightarrow 
1432   \mathcal{P}_{1}(p_{1},\bvec{\xi}^{(1)}) + \mathcal{P}_{2}(p_{2},\bvec{\xi}^{(2)}) + \mathcal{N}_{2}(p_{\mathcal{N}_{2}}, \bvec{\xi}^{(\mathcal{N}_{2})})
1433\end{equation}
1434%
1435Where $\mathcal{N}_{1}(k_{\mathcal {N}_{1}}, \bvec{\zeta}^{(\mathcal
1436{N}_{1})})$ and $\mathcal{N}_{2}(p_{\mathcal{N}_{2}},
1437\bvec{\xi}^{(\mathcal{N}_{2})})$ are the initial and final state of the
1438field of the nucleus respectively assumed to be unchanged, at rest and
1439unpolarized. This leads to $k_{\mathcal {N}_{1}} = k_{\mathcal
1440{N}_{2}} = 0$ and $\bvec{\zeta}^{(\mathcal {N}_{1})} =
1441\bvec{\xi}^{(\mathcal{N}_{2})} = 0$ 
1442
1443% Gamma conversion process
1444\textbf{In the case of gamma conversion process}:\\
1445$\mathcal{K}_{1}(k_{1},\bvec{\zeta}^{(1)})$ is the incoming photon initial
1446state with momentum $k_{1}$ and polarization state $\bvec{\zeta}^{(1)}$. \\
1447$\mathcal{P}_{1}(p_{1},\bvec{\xi}^{(1)})$ and
1448$\mathcal{P}_{2}(p_{2},\bvec{\xi}^{(2)})$ are the two photons final states with
1449momenta $p_{1}$ and $p_{2}$ and polarization states $\bvec{\xi}^{(1)}$ and $\bvec{\xi}^{(2)}$.
1450
1451% Bremsstrahlung process
1452\textbf{In the case of bremsstrahlung process}:\\
1453$\mathcal{K}_{1}(k_{1},\bvec{\zeta}^{(1)})$ is the incoming lepton
1454$e^{-}(e^{+})$ initial state with momentum $k_{1}$ and polarization
1455state $\bvec{\zeta}^{(1)}$. \\
1456$\mathcal{P}_{1}(p_{1},\bvec{\xi}^{(1)})$ is the lepton $e^{-}(e^{+})$ final
1457state with momentum $p_{1}$ and polarization state $\bvec{\xi}^{(1)}$. \\
1458$\mathcal{P}_{2}(p_{2},\bvec{\xi}^{(2)})$ is the bremsstrahlung photon in
1459final state with momentum $p_{2}$ and polarization state $\bvec{\xi}^{(2)}$.
1460
1461\subsection[Polarization transfer to the photon]{Polarization transfer from the lepton $e^{-}(e^{+})$ to a photon}
1462The polarization transfer from an electron (positron) to a photon in a
1463brems\-strahlung process was first calculated by Olsen and Maximon
1464\cite{polBrems:Olsen_Maximon} taking into account both Coulomb and screening
1465effects. In the Stokes vector formalism, the $e^{-}(e^{+})$
1466polarization state can be transformed to a photon polarization finale
1467state by means of interaction matrix $T_{\gamma}^{b}$. It defined via
1468%
1469\begin{equation}
1470 \left(\begin{array}{c} 
1471    O \\
1472 \bvec{\xi}^{(2)}   
1473 \end{array}\right)
1474= T_{\gamma}^{b} \,
1475 \left(\begin{array}{c} 
1476    1 \\
1477 \bvec{\zeta}^{(1)}   
1478\end{array}\right)\;,
1479\label{eq:brem_gamma}
1480\end{equation}
1481%
1482and
1483%
1484\begin{equation}
1485T_{\gamma}^{b}\approx
1486\left(
1487\begin{array}{cccc}
14881 & 0 & 0 & 0 \\
1489D & 0 & 0 & 0 \\
14900 & 0 & 0 & 0 \\
14910 & T & 0 & L \\ 
1492\end{array} 
1493\right)\;,
1494\label{eq:matrix_brem_g}
1495\end{equation} 
1496%
1497where
1498\begin{eqnarray}
1499I &=& (\epsilon_{1}^{2}+\epsilon_{2}^{2})(3+2\Gamma)-2\epsilon_{1}\epsilon_{2}(1+4u^{2}\hat\xi^{2}\Gamma)\\
1500D &=& \left\lbrace 8\epsilon_{1}\epsilon_{2}u^{2}\hat\xi^{2}\Gamma \right\rbrace / I\\
1501T &=& \left\lbrace -4k\epsilon_{2}\hat\xi(1-2\hat\xi)u \Gamma \right\rbrace  / I \\
1502L &=& 
1503k\lbrace(\epsilon_{1}+\epsilon_{2})(3+2\Gamma)-2\epsilon_{2}(1+4u^{2}\hat\xi^{2}\Gamma)\rbrace
1504/ I
1505\label{eq:polbremdef}
1506\end{eqnarray}
1507%
1508and
1509%
1510\begin{center}
1511\begin{tabular}{ll}
1512$\epsilon_{1}$       &  Total energy of the incoming lepton $e^{+}(e^{-})$ in units $mc^{2}$\\
1513$\epsilon_{2}$       &  Total energy of the outgoing lepton $e^{+}(e^{-})$ in units $mc^{2}$\\
1514$k$ &$=(\epsilon_{1}-\epsilon_{2})$, the energy of the bremsstrahlung photon in units of $mc^{2}$
1515\\
1516$\bvec{p}$ &  Electron (positron) initial momentum in units $mc$\\
1517$\bvec{k}$ &  Bremsstrahlung photon momentum in units $mc$\\
1518$\bvec{u}$ &  Component of $\bvec{p}$
1519      perpendicular to $\bvec{k}$ in units $mc$ and $u=\vert \bvec{u} \vert $\\
1520$\hat\xi$ & $ = 1/(1+u^{2})$
1521\end{tabular}
1522\end{center}
1523%
1524Coulomb and screening effects are contained in \(\Gamma\), defined as
1525follows
1526\begin{eqnarray}
1527\Gamma &=& \ln\left(\frac{1}{\delta}\right)-2-f(Z)+
1528           \mathcal{F}\left(\frac{\hat\xi}{\delta}\right) \quad \mbox{for } \Delta \le 120 \\ 
1529\Gamma &=& \ln\left( \frac{111}{\hat\xi Z^{\frac{1}{3}}}\right)-2-f(z)
1530           \quad \mbox{for } \Delta \ge 120
1531\end{eqnarray}
1532%
1533with
1534%
1535\begin{eqnarray}
1536\Delta &=& \frac{12 Z^{\frac{1}{3}}\epsilon_{1}\epsilon_{2} \hat\xi}{121
1537k} \quad \mbox{with $Z$ the atomic number and } \delta =
1538\frac{k}{2\epsilon_{1}\epsilon{2}}
1539\end{eqnarray}
1540%
1541%
1542\noindent
1543$f(Z)$ is the coulomb correction term derived by Davies, Bethe
1544and Maximon \cite{polBrems:Davise}.
1545$ \mathcal{F}({\hat\xi}/{\delta})$ contains the screening effects
1546and is zero for $\Delta \le 0.5 $ (No screening effects). For $0.5 \le
1547\Delta \le 120 $ (intermediate screening) it is a slowly decreasing
1548function. The $\mathcal{F}({\hat\xi}/{\delta})$ values versus
1549$\Delta$ are given in table \ref{koch} and used with a linear
1550interpolation in between.
1551
1552The polarization vector of the incoming $e^{-}(e^{+})$ must be rotated
1553into the frame defined by the scattering plane (x-z-plane) and the
1554direction of the outgoing photon (z-axis). The resulting polarization
1555vector of the bremsstrahlung photon is also given in this frame. 
1556\begin{table}[h]
1557\caption{$ \mathcal{F}({\hat\xi}/{\delta})$ for intermediate values of the screening factor \cite{polBrems:koch}.}
1558\label{koch}
1559\begin{center}
1560\begin{tabular}{|cc|cc|}
1561\hline
1562$\Delta$ &$ -\mathcal{F}\left({\hat\xi}/{\delta}\right)$ & $\Delta$& $ -\mathcal{F}\left({\hat\xi}/{\delta}\right)$\\
1563\hline
15640.5  & 0.0145 & 40.0  & 2.00 \\
15651.0  & 0.0490 & 45.0  & 2.114\\
15662.0  & 0.1400 & 50.0  & 2.216\\
15674.0  & 0.3312 & 60.0  & 2.393\\
15688.0  & 0.6758 & 70.0  & 2.545\\
156915.0 & 1.126  & 80.0  & 2.676\\
157020.0 & 1.367  & 90.0  & 2.793\\
157125.0 & 1.564  & 100.0 & 2.897\\ 
157230.0 & 1.731  & 120.0 & 3.078\\ 
157335.0 & 1.875  & & \\ 
1574\hline
1575\end{tabular} 
1576\end{center}
1577\end{table}
1578%
1579Using Eq.\ (\ref{eq:brem_gamma}) and the transfer matrix given by
1580Eq.\ (\ref{eq:matrix_brem_g}) the bremsstrahlung photon polarization
1581state in the Stokes formalism \cite{polBrems:McMaster1, polBrems:McMaster2} is given by
1582%
1583\begin{equation}
1584\xi^{(2)} = \left(
1585\begin{array}{c}
1586\xi_{1}^{(2)}\\
1587\xi_{2}^{(2)} \\
1588\xi_{3}^{(2)} \\ 
1589\end{array} 
1590\right)
1591\approx 
1592\left(
1593\begin{array}{c}
1594D \\
15950 \\
1596\zeta_{1}^{(1)}L + \zeta_{2}^{(1)}T \\ 
1597\end{array} 
1598\right)
1599\end{equation}
1600
1601\subsection[Polarization transfer to the lepton]{Remaining polarization of the lepton after emitting a bremsstrahlung photon}
1602The \(e^{-}(e^{+})\) polarization final state after emitting a
1603bremsstrahlung photon can be calculated using the interaction matrix
1604\(T_{l}^{b}\) which describes the lepton depolarization. The
1605polarization vector for the outgoing \(e^{-}(e^{+})\) is not given by
1606Olsen and Maximon. However, their results can be used to calculate the
1607following transfer matrix \cite{polBrems:klausFl,polBrems:hoogduin}.
1608%
1609\begin{equation}
1610 \left(\begin{array}{c} 
1611    O \\
1612 \bvec{\xi}^{(1)}   
1613 \end{array}\right)
1614 = T_{l}^{b} \,
1615 \left(\begin{array}{c} 
1616    1 \\
1617 \bvec{\zeta}^{(1)}   
1618\end{array}\right)
1619\label{eq:brem_lepton}
1620\end{equation}
1621%
1622\begin{equation}
1623T_{l}^{b}\approx
1624\left(
1625\begin{array}{cccc}
16261 & 0 & 0 & 0 \\
1627D & M & 0 & E \\
16280 & 0 & M & 0 \\
16290 & F & 0 & M+P \\ 
1630\end{array} 
1631\right)
1632\label{eq:matrix_brem_l}
1633\end{equation}
1634%
1635where
1636%
1637\begin{eqnarray}
1638  I &=&(\epsilon_{1}^{2}+\epsilon_{2}^{2})(3+2\Gamma)-2\epsilon_{1}\epsilon_{2}(1+4u^{2}\hat\xi^{2}\Gamma)\\
1639  F &=& \epsilon_{2} \left\lbrace 4k\hat\xi u (1-2\hat\xi)\Gamma\right\rbrace /I \\
1640  E &=& \epsilon_{1}  \left\lbrace 4k\hat\xi u (2\hat\xi-1)\Gamma \right\rbrace /I\\
1641  M &=& \left\lbrace 4k\epsilon_{1}\epsilon_{2}(1+\Gamma - 2 u^{2}\hat\xi^{2} \Gamma)\right\rbrace / I \\
1642  P &=& \left\lbrace k^{2} (1+8 \Gamma(\hat\xi - 0.5)^{2}\right\rbrace  / I
1643\end{eqnarray}
1644%
1645and
1646%
1647\begin{center}
1648\begin{tabular}{ll}
1649$\epsilon_{1}$       &  Total energy of the incoming $e^{+}/e^{-}$ in units $mc^{2}$\\
1650$\epsilon_{2}$       &  Total energy of the outgoing $e^{+}/e^{-}$ in units $mc^{2}$\\
1651$k$ & $=(\epsilon_{1}-\epsilon_{2})$, energy of the photon in units of $mc^{2}$\\
1652$\bvec{p}$ &  Electron (positron) initial momentum in units $mc$\\
1653$\bvec{k}$ &  Photon momentum in units $mc$\\
1654$\bvec{u}$ &  Component of $\bvec{p}$
1655perpendicular  to $\bvec{k}$ in units $mc$ and $u=\vert \bvec{u} \vert $
1656\end{tabular}
1657\end{center}
1658
1659Using Eq.\ (\ref{eq:brem_lepton}) and the transfer matrix given by
1660Eq.\ (\ref{eq:matrix_brem_l}) the \(e^{-}(e^{+})\) polarization state
1661after emitting a bremsstrahlung photon is given in the Stokes
1662formalism by
1663%
1664\begin{equation}
1665\xi^{(1)} = \left(
1666\begin{array}{c}
1667\xi_{1}^{(1)}\\
1668\xi_{2}^{(1)} \\
1669\xi_{3}^{(1)} \\ 
1670\end{array} 
1671\right)
1672\approx 
1673\left(
1674\begin{array}{c}
1675 \zeta_{1}^{(1)} M + \zeta_{3}^{(1)} E \\
1676 \zeta_{2}^{(1)} M  \\
1677 \zeta_{3}^{(1)}(M+P) + \zeta_{1}^{(1)} F \\ 
1678\end{array} 
1679\right)
1680\;.
1681\end{equation}
1682
1683\subsection{Status of this document}
168420.11.06 created by K.Laihem\\
168521.02.07 minor update by A.Sch{\"a}licke\\
168627.11.08 correction in Eq.\ \eqref{eq:polbremdef} by A.Sch{\"a}licke
1687
1688\begin{latexonly}
1689
1690\begin{thebibliography}{7}
1691
1692\bibitem{polBrems:Olsen_Maximon} H.~Olsen and L.C.~Maximon. Photon and electron polarization in high- energy bremsstrahlung and pair production with screening. Physical Review, 114:887-904, 1959.
1693
1694\bibitem{polBrems:McMaster1} W.H.~McMaster. Polarization and the Stokes parameters. American Journal of Physics, 22(6):351-362, 1954.
1695
1696\bibitem{polBrems:McMaster2}W.H.~McMaster. Matrix representation of polarization. Reviews of Modern Physics, 33(1):8-29, 1961.
1697
1698\bibitem{polBrems:klausFl}K.~Fl{\"o}ttmann. Investigations toward the development of polarized and unpolarized high intensity positron sources for linear colliders. PhD thesis, Universitat Hamburg, 1993.
1699
1700\bibitem{polBrems:hoogduin}Hoogduin, Johannes Marinus, Electron, positron and photon polarimetry. PhD thesis, Rijksuniversiteit Groningen 1997.
1701
1702\bibitem{polBrems:Davise}H.~Davies, H.A.~Bethe and L.C.~Maximon, Theory of Bremsstrahlung and Pair Production. II. Integral Cross Section for Pair Production, Physical Review, 93(4):788-795, 1954.
1703
1704\bibitem{polBrems:koch}H.W.~Koch and J.W.~Motz, Bremsstrahlung cross-section formulas and related data. Review Mod. Phys., 31(4):920-955, 1959.
1705
1706\bibitem{polBrems:Laihem:thesis}
1707K.~Laihem, PhD thesis, Measurement of the positron polarization at an
1708helical undulator based positron source for the International Linear
1709Collider ILC, Humboldt University Berlin, Germany, (2008).
1710
1711\end{thebibliography}
1712\end{latexonly}
1713
1714\begin{htmlonly}
1715
1716\subsection{Bibliography}
1717\begin{enumerate}
1718
1719\item H.~Olsen and L.C.~Maximon. Photon and electron polarization in high- energy bremsstrahlung and pair production with screening. Physical Review, 114:887-904, 1959.
1720
1721\item W.H.~McMaster. Polarization and the Stokes parameters. American Journal of Physics, 22(6):351-362, 1954.
1722
1723\item W.H.~McMaster. Matrix representation of polarization. Reviews of Modern Physics, 33(1):8-29, 1961.
1724
1725\item K.~Fl{\"o}ttmann. Investigations toward the development of polarized and unpolarized high intensity positron sources for linear colliders. PhD thesis, Universitat Hamburg, 1993.
1726
1727\item Hoogduin, Johannes Marinus. Electron, positron and photon polarimetry. PhD thesis, Rijksuniversiteit Groningen 1997.
1728
1729\item H.~Davies, H.A.~Bethe and L.C.~Maximon. Theory of Bremsstrahlung and Pair Production. II. Integral Cross Section for Pair Production. Physical Review, 93(4):788-795, 1954.
1730
1731\item H.W.~Koch and J.W.~Motz. Bremsstrahlung cross-section formulas and related data. Review Mod. Phys., 31(4):920-955, 1959.
1732
1733\item 
1734K.~Laihem, PhD thesis, Measurement of the positron polarization at an
1735helical undulator based positron source for the International Linear
1736Collider ILC, Humboldt University Berlin, Germany, (2008).
1737
1738\end{enumerate}
1739
1740\end{htmlonly}
1741
1742\newpage
1743\section{Polarized Gamma conversion into an electron--positron pair}\label{sec:pol.conv}
1744\subsection{Method}
1745
1746The polarized version of gamma conversion is based on the EM standard
1747process {\em G4GammaConversion}. Mean free path and the distribution
1748of  explicitly generated final state particles are treated by this
1749version. For details consult
1750section \ref{sec:em.conv}.
1751
1752The remaining task is to attribute polarization vectors to the
1753generated final state leptons, which is discussed in the following.
1754
1755
1756\subsection[Polarization transfer]{Polarization transfer from the photon to the two leptons}
1757Gamma conversion process is essentially the inverse process of
1758Bremsstrahlung and the interaction matrix is obtained by inverting the
1759rows and columns of the bremsstrahlung matrix and changing the sign of
1760\(\epsilon_{2}\), cf.\ section \ref{sec:pol.bremsstrahlung}. It
1761follows from the work by Olsen and Maximon 
1762\cite{polPair:Olsen_Maximon} that the polarization state \(\xi^{(1)}\) of an
1763electron or positron after pair production is obtained by
1764%
1765\begin{equation}
1766 \left(\begin{array}{c} 
1767    O \\
1768 \bvec{\xi}^{(1)}   
1769 \end{array}\right)
1770 = T_{l}^{p}  \,
1771 \left(\begin{array}{c} 
1772    1 \\
1773 \bvec{\zeta}^{(1)}   
1774\end{array}\right)
1775\label{eq:conv_lepton}
1776\end{equation}
1777%
1778and
1779%
1780\begin{equation}
1781T_{l}^{p}\approx
1782\left(
1783\begin{array}{cccc}
17841 & D & 0 & 0 \\
17850 & 0 & 0 & T \\
17860 & 0 & 0 & 0 \\
17870 & 0 & 0 & L \\ 
1788\end{array} 
1789\right)
1790\;,
1791\label{eq:matrix_conv}
1792\end{equation}
1793%
1794where
1795\begin{eqnarray}
1796I &=& (\epsilon_{1}^{2}+\epsilon_{2}^{2})(3+2\Gamma)+2\epsilon_{1}\epsilon_{2}(1+4u^{2}\hat\xi^{2}\Gamma)\\
1797D &=& \left\lbrace -8\epsilon_{1}\epsilon_{2}u^{2}\hat\xi^{2}\Gamma \right\rbrace / I\\
1798T &=& \left\lbrace -4k\epsilon_{2}\hat\xi(1-2\hat\xi)u \Gamma \right\rbrace  / I \\
1799L &=&
1800k\lbrace(\epsilon_{1}-\epsilon_{2})(3+2\Gamma)+2\epsilon_{2}(1+4u^{2}\hat\xi^{2}\Gamma)\rbrace/
1801I
1802\label{eq:polpairdef}
1803\end{eqnarray}
1804and
1805\begin{center}
1806\begin{tabular}{ll}
1807$\epsilon_{1}$  &  total energy of the first lepton $e^{+}(e^{-})$ in units $mc^{2}$\\
1808$\epsilon_{2}$  & total energy of the second lepton $e^{-}(e^{+})$ in units $mc^{2}$\\
1809$k=(\epsilon_{1}+\epsilon_{2})$ & energy of the incoming photon in units of $mc^{2}$\\
1810$\bvec{p}$      & electron=positron initial momentum in units $mc$\\
1811$\bvec{k}$      & photon momentum in units $mc$\\
1812$\bvec{u}$      & electron/positron initial momentum in units $mc$\\
1813$u$ & $=\vert \bvec{u} \vert $
1814\end{tabular}
1815\end{center}
1816%
1817%Here, $\epsilon_{1}(\epsilon_{2})$  is the energy of the observed
1818%electron or positron. The matrix (\ref{eq:matrix_conv}) for pair
1819%production is the transpose of matrix (\ref{eq:matrix_brem_g}).
1820Coulomb and screening effects are contained in \(\Gamma\), defined in
1821section \ref{sec:pol.bremsstrahlung}.
1822
1823
1824Using Eq.\ (\ref{eq:conv_lepton}) and the transfer matrix given by
1825Eq.\ (\ref{eq:matrix_conv}) the polarization state of
1826the produced $e^{-}(e^{+})$ is given in the Stokes formalism by:
1827
1828\begin{equation}
1829\xi^{(1)} = \left(
1830\begin{array}{c}
1831\xi_{1}^{(1)}\\
1832\xi_{2}^{(1)} \\
1833\xi_{3}^{(1)} \\ 
1834\end{array} 
1835\right)
1836\approx 
1837\left(
1838\begin{array}{c}
1839\zeta_{3}^{(1)} T  \\
18400 \\ 
1841\zeta_{3}^{(1)} L  \\
1842\end{array} 
1843\right)
1844\end{equation}
1845
1846
1847\subsection{Status of this document}
184820.11.06 created by K.Laihem\\
184921.02.07 minor update by A.Sch{\"a}licke\\
185027.11.08 correction in Eq.\ \eqref{eq:polpairdef} by A.Sch{\"a}licke
1851 
1852
1853\begin{latexonly}
1854
1855\begin{thebibliography}{9}
1856
1857\bibitem{polPair:Olsen_Maximon} H.~Olsen and L.C.~Maximon. Photon and electron polarization in high- energy bremsstrahlung and pair production with screening. Physical Review, 114:887-904, 1959.
1858
1859\bibitem{polPair:Laihem:thesis}
1860K.~Laihem, PhD thesis, Measurement of the positron polarization at an
1861helical undulator based positron source for the International Linear
1862Collider ILC, Humboldt University Berlin, Germany, (2008).
1863
1864
1865\end{thebibliography}
1866
1867\end{latexonly}
1868
1869\begin{htmlonly}
1870
1871\subsection{Bibliography}
1872\begin{enumerate}
1873
1874\item H.~Olsen and L.C.~Maximon. Photon and electron polarization in high- energy bremsstrahlung and pair production with screening. Physical Review, 114:887-904, 1959.
1875
1876\item K.~Laihem, PhD thesis, Measurement of the positron polarization at an
1877helical undulator based positron source for the International Linear
1878Collider ILC, Humboldt University Berlin, Germany, (2008).
1879
1880
1881\end{enumerate}
1882
1883\end{htmlonly}
1884
1885\newpage
1886\section{Polarized Photoelectric Effect}
1887%
1888\subsection{Method}
1889%
1890This section describes the basic formulas of polarization transfer in
1891the photoelectric effect class ({\em G4PolarizedPhotoElectricEffect}). 
1892The photoelectric effect is the emission of electrons from matter upon
1893the absorption of electromagnetic radiation, such as ultraviolet
1894radiation or x-rays. The energy of the photon is completely absorbed
1895by the electron and, if sufficient, the electron can escape from the
1896material with a finite kinetic energy. A single photon can only eject
1897a single electron, as the energy of one photon is only absorbed by one
1898electron. The electrons that are emitted are often called
1899photoelectrons. If the photon energy is higher than the binding energy
1900the remaining energy is transferred to the electron as a kinetic
1901energy
1902\begin{equation}
1903E_{kin}^{e^-} = k-B_{shell}
1904\end{equation}
1905%
1906In Geant4 the photoelectric effect process is taken into account if:
1907\begin{equation}
1908k > B_{shell}
1909\end{equation}
1910%
1911Where $k$ is the incoming photon energy and $B_{shell}$ the electron
1912binding energy provided by the class {\it G4AtomicShells}.
1913
1914The polarized version of the photoelectric effect is based on the EM
1915standard process {\em G4PhotoElectricEffect}. Mean free path and the
1916distribution of  explicitly generated final state particles are
1917treated by this version. For details consult
1918section \ref{sec:em.pee}.
1919
1920The remaining task is to attribute polarization vectors to the
1921generated final state electron, which is discussed in the following.
1922
1923
1924\subsection{Polarization transfer}
1925%
1926The polarization state of an incoming polarized photon
1927is described by the Stokes vector $\vec{\zeta}^{(1)}$.
1928%
1929The polarization transfer to the photoelectron
1930can be described in the Stokes  formalism using the same approach as
1931for the Bremsstrahlung and gamma conversion processes,
1932cf.~\ref{sec:pol.bremsstrahlung} and \ref{sec:pol.conv}. The relation
1933between the photoelectron's Stokes parameters and the incoming
1934photon's Stokes parameters is described by the interaction matrix
1935$T_{l}^{p}$ derived from H. Olsen \cite{polPEE:H.Olsen.Kgl} and reviewed by
1936H.W McMaster \cite{polPEE:McMaster2}:
1937\begin{equation}
1938 \left(\begin{array}{c} 
1939    I^{\prime} \\
1940 \vec{\xi}^{(1)}   
1941 \end{array}\right)
1942 = T_{l}^{p} \,
1943 \left(\begin{array}{c} 
1944    I_0 \\
1945 \vec{\zeta}^{(1)}   
1946\end{array}\right)
1947\label{eq:photo_lepton}
1948\end{equation}
1949%
1950In general, for the photoelectric effect as a two-body scattering, the
1951cross section should be correlated with the spin states of the
1952incoming photon and the target electron. In our implementation the
1953target electron is not polarized and only the polarization transfer
1954from the photon to the photoelectron is taken into account. In this
1955case the cross section of the process remains polarization
1956independent. To compute the matrix elements we take advantage of the
1957available kinematic variables provided by the generic {\it
1958  G4PhotoelectricEffect} class. To compute the photoelectron spin
1959state (Stokes parameters), four main parameters are needed: 
1960\begin{itemize}
1961\item The incoming photon Stokes vector $\vec{\zeta}^{(1)}$
1962\item The incoming photon's energy $k$.
1963\item the photoelectron's kinetic energy $E_{kin}^{e^-}$ or the
1964  Lorentz factors $\beta$ and $\gamma$.
1965\item The photoelectron's polar angle $\theta$ or $\cos\theta$.
1966\end{itemize}   
1967%
1968The interaction matrix derived by H. Olsen \cite{polPEE:H.Olsen.Kgl} is given
1969by:
1970%
1971\begin{equation}
1972T_{l}^{P}= %\frac{Z^{5}}{(137)^{4}}r_{0}^{2}\beta^{3}\frac{\epsilon}{k^{3}}\frac{\sin^{2}\theta}{(1-\beta \cos\theta)^{3}}
1973\left(
1974\begin{array}{cccc}
19751+D & -D & 0 & 0 \\
19760   & 0  & 0 & B \\
19770   & 0  & 0 & 0 \\
19780   & 0  & 0 & A \\ 
1979\end{array} 
1980\right)
1981\label{eq:matrix_photo}
1982\end{equation}
1983
1984
1985Where
1986\begin{eqnarray}
1987D &=& \frac{1}{k}\left[\frac{2}{k\epsilon(1-\beta \cos\theta)}-1 \right]\\
1988A &=& \frac{\epsilon}{\epsilon+1}\left[\frac{2}{k\epsilon}+\beta\cos\theta+\frac{2}{k\epsilon^2(1-\beta \cos\theta)}\right]\\
1989B &=& \frac{\epsilon}{\epsilon+1}\beta\sin\theta\left[\frac{2}{k\epsilon(1-\beta \cos\theta)}-1\right]
1990\end{eqnarray}
1991
1992Using Eq.~(\ref{eq:photo_lepton}) and the transfer matrix given by
1993Eq.~(\ref{eq:matrix_photo}) the polarization state of
1994the produced $e^{-}$ is given in the Stokes formalism by:
1995
1996\begin{equation}
1997\vec{\xi}^{(1)} = \left(
1998\begin{array}{c}
1999\xi_{1}^{(1)}\\
2000\xi_{2}^{(1)} \\
2001\xi_{3}^{(1)} \\ 
2002\end{array} 
2003\right)
2004=
2005\left(
2006\begin{array}{c}
2007\zeta_{3}^{(1)} B  \\
20080 \\ 
2009\zeta_{3}^{(1)} A  \\
2010\end{array} 
2011\right)
2012\label{eq:final_stat}
2013\end{equation}
2014
2015From equation (\ref{eq:final_stat}) one can see that a longitudinally
2016(transversally) polarized photoelectron can only be produced if the
2017incoming photon is circularly polarized.
2018
2019\subsection{Status of this document}
202020.11.07 created by K.Laihem\\
202103.12.07 minor update by A.Sch{\"a}licke\\
2022
2023\begin{latexonly}
2024
2025\begin{thebibliography}{9}
2026
2027%\bibitem{polBrems:McMaster1} W.H.~McMaster. Polarization and the Stokes parameters. American Journal of Physics, 22(6):351-362, 1954.
2028
2029\bibitem{polPEE:H.Olsen.Kgl} H. Olsen, Kgl.~N.~Videnskab. Selskabs Forh. 31, Nos 11, 11a (1958).
2030
2031\bibitem{polPEE:McMaster2}W.H.~McMaster. Matrix representation of polarization. Reviews of Modern Physics, 33(1):8-29, 1961.
2032
2033
2034%\bibitem{polPair:Olsen_Maximon} H.~Olsen and L.C.~Maximon. Photon and electron polarization in high- energy bremsstrahlung and pair production with screening. Physical Review, 114:887-904, 1959.
2035
2036\bibitem{polPEE:Laihem:thesis}
2037K.~Laihem, PhD thesis, Measurement of the positron polarization at an
2038helical undulator based positron source for the International Linear
2039Collider ILC, Humboldt University Berlin, Germany, (2008).
2040
2041
2042\end{thebibliography}
2043
2044\end{latexonly}
2045
2046\begin{htmlonly}
2047
2048\subsection{Bibliography}
2049\begin{enumerate}
2050\item{polPEE:H.Olsen.Kgl} H. Olsen, Kgl.~N.~Videnskab. Selskabs Forh. 31, Nos 11, 11a (1958).
2051
2052\item{polPEE:McMaster2}W.H.~McMaster. Matrix representation of polarization. Reviews of Modern Physics, 33(1):8-29, 1961.
2053
2054
2055\item K.~Laihem, PhD thesis, Measurement of the positron polarization at an
2056helical undulator based positron source for the International Linear
2057Collider ILC, Humboldt University Berlin, Germany, (2008).
2058
2059\end{enumerate}
2060
2061\end{htmlonly}
2062
2063% LocalWords:  Bhabha
Note: See TracBrowser for help on using the repository browser.