\section[Photoabsorption cross section at low energies] {Photoabsorption Cross Section at Low Energies} \label{secsandia} \subsection{Method} The photoabsorption cross section, $\sigma_{\gamma}(\omega)$, where $\omega$ is the photon energy, is used in Geant4 for the description of the photo-electric effect, X-ray transportation and ionization effects in very thin absorbers. As mentioned in the discussion of photoabsorption ionization (see section \ref{secpai}), it is convenient to represent the cross section as a polynomial in $\omega^{-1}$ \cite{sandia.bigg} : \begin{equation} \sigma_{\gamma}(\omega) = \sum_{k=1}^{4}a_{k}^{(i)}\omega^{-k} . \end{equation} \\ \noindent Using cross sections from the original Sandia data tables, calculations of primary ionization and energy loss distributions produced by relativistic charged particles in gaseous detectors show clear disagreement with experimental data, especially for gas mixtures which include xenon. \\ \noindent Therefore a special investigation was performed \cite{sandia.grich} by fitting the coefficients $a_{k}^{(i)}$ to modern data from synchrotron radiation experiments in the energy range of $ 10 - 50 \ eV$. The fits were performed for elements typically used in detector gas mixtures: hydrogen, fluorine, carbon, nitrogen and oxygen. Parameters for these elements were extracted from data on molecular gases such as $N_2$, $O_2$, $CO_2$, $CH_4$, and $CF_4$ \cite{sandia.lee73, sandia.lee77}. Parameters for the noble gases were found using data given in the tables \cite{sandia.marr, sandia.west}. \subsection{Status of this document} 18.11.98 created by V. Grichine \\ 10.05.02 re-written by D.H. Wright \\ \begin{latexonly} \begin{thebibliography}{99} \bibitem{sandia.bigg} Biggs F., and Lighthill R., {Preprint Sandia Laboratory, SAND 87-0070} (1990) \bibitem{sandia.grich} Grichine V.M., Kostin A.P., Kotelnikov S.K. et al., {Bulletin of the Lebedev Institute no. 2-3, 34} (1994). \bibitem{sandia.lee73} Lee L.C. et al., {J.Q.S.R.T., v. 13, p. 1023} (1973). \bibitem{sandia.lee77} Lee L.C. et al., {Journ. of Chem. Phys., v. 67, p. 1237} (1977). \bibitem{sandia.marr} G.V. Marr and J.B. West, {Atom. Data Nucl. Data Tabl., v. 18, p. 497} (1976). \bibitem{sandia.west} J.B. West and J. Morton, {Atom. Data Nucl. Data Tabl., v. 30, p. 253} (1980). \end{thebibliography} \end{latexonly} \begin{htmlonly} \subsection{Bibliography} \begin{enumerate} \item Biggs F., and Lighthill R., {Preprint Sandia Laboratory, SAND 87-0070} (1990) \item Grichine V.M., Kostin A.P., Kotelnikov S.K. et al., {Bulletin of the Lebedev Institute no. 2-3, 34} (1994). \item Lee L.C. et al., {J.Q.S.R.T., v. 13, p. 1023} (1973). \item Lee L.C. et al., {Journ. of Chem. Phys., v. 67, p. 1237} (1977). \item G.V. Marr and J.B. West, {Atom. Data Nucl. Data Tabl., v. 18, p. 497} (1976). \item J.B. West and J. Morton, {Atom. Data Nucl. Data Tabl., v. 30, p. 253} (1980). \end{enumerate} \end{htmlonly}