source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/electromagnetic/standard/singlescat.tex @ 1211

Last change on this file since 1211 was 1211, checked in by garnier, 14 years ago

CVS update

File size: 5.3 KB
Line 
1
2\section[Single Scattering]{Single Scattering}
3
4Single elastic scattering process is an alternative to the
5multiple scattering process. The advantage of the single scattering process is
6in possibility of usage of theory based cross sections, in contrary to
7the Geant4 multiple scattering model \cite{singscat.urban}, which uses a number of
8phenomenological approximations on top of Lewis theory.
9The process $G4CoulombScattering$ was created
10for simulation of single scattering of muons, it also applicable  with some physical
11limitations to electrons, muons and ions.
12Because each of elastic collisions are simulated the number of steps of charged
13particles significantly increasing in comparison with the multiple scattering
14approach, correspondingly its CPU performance is pure. However, in low-density media
15(vacuum, low-density gas) multiple scattering may provide wrong results and
16single scattering processes is more adequate.
17
18\subsection{Coulomb Scattering}
19
20The single scattering model of Wentzel \cite{singscat.wentzel}
21is used in many of multiple scattering models including Penelope code
22\cite{singscat.penelope}. The Wentzel for describing elastic
23scattering of particles with charge $ze$ ($z=-1$ for electron)
24by atomic nucleus with atomic number $Z$
25based on simplified scattering potential
26\begin{equation}
27V(r) =  \frac {zZe^2}{r}exp(-r/R),
28\label{singscat.a}
29\end{equation}
30where the exponential factor tries to reproduce the effect of screening.
31The parameter $R$ is a screening radius, which may be estimated from Thomas-Fermi model of
32the atom
33\begin{equation}
34R =  0.885 Z^{-1/3} r_B,
35\label{singscat.a1}
36\end{equation}
37where $r_B$ is the Bohr radius. In the first Born approximation the
38elastic scattering cross section $\sigma^(W)$ can be obtained as
39\begin{equation}
40\frac{d\sigma^{(W)}(\theta)}{d\Omega}= \frac{zZe^2}{(p\beta c)^2}\frac{1}{(2A + 1 - cos\theta)^2},
41\label{singscat.a2}
42\end{equation}
43where $p$ is the momentum and $\beta$ is the velocity of the projectile particle.
44The screening parameter $A$ according to Moliere and Bethe \cite{singscat.bethe}
45\begin{equation}
46A =  \left(\frac{\hslash}{2pR}\right)^2(1.13 + 3.76(\alpha Z/\beta)^2),
47\label{singscat.a3}
48\end{equation}
49where $\alpha$ is a fine structure constant and the factor in brackets
50is used to take into account second order corrections to 
51the first Born approximation.\\
52
53The total elastic cross section $\sigma$ can be expressed via Wentzel cross section
54(\ref{singscat.a2})
55\begin{equation}
56\frac{d\sigma(\theta)}{d\Omega}= \frac{d\sigma^{(W)}(\theta)}{d\Omega}\left(\frac{1}{(1 + \frac{(qR_N)^2}{12})^2} + \frac{1}{Z}\right),
57\label{singscat.a4}
58\end{equation}
59where $q$ is momentum transfer to the nucleus, $R_N$ is nuclear radius. This term takes into
60account nuclear size effect \cite{singscat.kokoulin}, the second term takes into account scattering off
61electrons. The results of simulation with the single scattering model (Fig.\ref{plot:Alumin})
62are competitive with the results of the multiple scattering.
63\begin{figure}[htbp]
64\center
65\includegraphics[scale=0.4]{electromagnetic/standard/al.eps}
66\caption{Scattering of muons off 1.5 mm aluminum foil: data \cite{singscat.attwood} - black squares;
67simulation - colored markers corresponding
68different options of multiple scattering and single scattering model; in the bottom
69plot - relative difference between the simulation and the data in percents;
70hashed area demonstrates one standard
71deviation of the data.}
72\label{plot:Alumin}
73\end{figure}
74\noindent
75 
76\subsection{Implementation Details}
77
78The total cross section of the process is obtained as a result of integration
79of the differential cross section (\ref{singscat.a4}). The first term of this cross section
80is integrated in the interval $(0,\pi)$. The second term in the smaller interval $(0,\theta_m)$,
81where $\theta_m$ is the maximum scattering angle off electrons, which is determined using the cut value
82for the delta electron production. Before sampling of angular distribution the random
83choice is performed between scattering off the nucleus and off electrons.
84
85\subsection{Status of this document}
86 06.12.07  created by V. Ivanchenko \\
87 
88\begin{latexonly}
89
90\begin{thebibliography}{99}
91
92\bibitem{singscat.urban} L.~Urban, A multiple scattering model,
93   {\em CERN-OPEN-2006-077, Dec 2006. 18 pp.}
94\bibitem{singscat.wentzel}G.~Wentzel,
95   {\em Z. Phys. 40 (1927) 590.}
96\bibitem{singscat.bethe}H.A.~Bethe,
97   {\em Phys. Rev. 89 (1953) 1256.}
98\bibitem{singscat.penelope}J.M.~Fernandez-Varea et al.
99   {\em NIM B 73 (1993) 447.}
100\bibitem{singscat.kokoulin} A.V.~Butkevich et al.,
101   {\em NIM A 488 (2002) 282. }
102\bibitem{singscat.attwood} D.~Attwood et al.
103   {\em NIM B 251 (2006) 41.}
104\end{thebibliography}
105
106\end{latexonly}
107
108\begin{htmlonly}
109
110\subsection{Bibliography}
111
112\begin{enumerate}
113
114\item L.~Urban, A multiple scattering model,
115   {\em CERN-OPEN-2006-077, Dec 2006. 18 pp.}
116\item G.~Wentzel,
117   {\em Z. Phys. 40 (1927) 590.}
118\item H.A.~Bethe,
119   {\em Phys. Rev. 89 (1953) 1256.}
120\item J.M.~Fernandez-Varea et al.
121   {\em NIM B 73 (1993) 447.}
122\item A.V.~Butkevich et al.,
123   {\em NIM A 488 (2002) 282. }
124\item  D.~Attwood et al.
125   {\em NIM B 251 (2006) 41.}
126\end{enumerate}
127
128\end{htmlonly}
129
130
131
Note: See TracBrowser for help on using the repository browser.