| 1 |
|
|---|
| 2 | \section[Single Scattering]{Single Scattering}
|
|---|
| 3 |
|
|---|
| 4 | Single elastic scattering process is an alternative to the
|
|---|
| 5 | multiple scattering process. The advantage of the single scattering process is
|
|---|
| 6 | in possibility of usage of theory based cross sections, in contrary to
|
|---|
| 7 | the Geant4 multiple scattering model \cite{singscat.urban}, which uses a number of
|
|---|
| 8 | phenomenological approximations on top of Lewis theory.
|
|---|
| 9 | The process $G4CoulombScattering$ was created
|
|---|
| 10 | for simulation of single scattering of muons, it also applicable with some physical
|
|---|
| 11 | limitations to electrons, muons and ions.
|
|---|
| 12 | Because each of elastic collisions are simulated the number of steps of charged
|
|---|
| 13 | particles significantly increasing in comparison with the multiple scattering
|
|---|
| 14 | approach, correspondingly its CPU performance is pure. However, in low-density media
|
|---|
| 15 | (vacuum, low-density gas) multiple scattering may provide wrong results and
|
|---|
| 16 | single scattering processes is more adequate.
|
|---|
| 17 |
|
|---|
| 18 | \subsection{Coulomb Scattering}
|
|---|
| 19 |
|
|---|
| 20 | The single scattering model of Wentzel \cite{singscat.wentzel}
|
|---|
| 21 | is used in many of multiple scattering models including Penelope code
|
|---|
| 22 | \cite{singscat.penelope}. The Wentzel for describing elastic
|
|---|
| 23 | scattering of particles with charge $ze$ ($z=-1$ for electron)
|
|---|
| 24 | by atomic nucleus with atomic number $Z$
|
|---|
| 25 | based on simplified scattering potential
|
|---|
| 26 | \begin{equation}
|
|---|
| 27 | V(r) = \frac {zZe^2}{r}exp(-r/R),
|
|---|
| 28 | \label{singscat.a}
|
|---|
| 29 | \end{equation}
|
|---|
| 30 | where the exponential factor tries to reproduce the effect of screening.
|
|---|
| 31 | The parameter $R$ is a screening radius, which may be estimated from Thomas-Fermi model of
|
|---|
| 32 | the atom
|
|---|
| 33 | \begin{equation}
|
|---|
| 34 | R = 0.885 Z^{-1/3} r_B,
|
|---|
| 35 | \label{singscat.a1}
|
|---|
| 36 | \end{equation}
|
|---|
| 37 | where $r_B$ is the Bohr radius. In the first Born approximation the
|
|---|
| 38 | elastic scattering cross section $\sigma^(W)$ can be obtained as
|
|---|
| 39 | \begin{equation}
|
|---|
| 40 | \frac{d\sigma^{(W)}(\theta)}{d\Omega}= \frac{zZe^2}{(p\beta c)^2}\frac{1}{(2A + 1 - cos\theta)^2},
|
|---|
| 41 | \label{singscat.a2}
|
|---|
| 42 | \end{equation}
|
|---|
| 43 | where $p$ is the momentum and $\beta$ is the velocity of the projectile particle.
|
|---|
| 44 | The screening parameter $A$ according to Moliere and Bethe \cite{singscat.bethe}
|
|---|
| 45 | \begin{equation}
|
|---|
| 46 | A = \left(\frac{\hslash}{2pR}\right)^2(1.13 + 3.76(\alpha Z/\beta)^2),
|
|---|
| 47 | \label{singscat.a3}
|
|---|
| 48 | \end{equation}
|
|---|
| 49 | where $\alpha$ is a fine structure constant and the factor in brackets
|
|---|
| 50 | is used to take into account second order corrections to
|
|---|
| 51 | the first Born approximation.\\
|
|---|
| 52 |
|
|---|
| 53 | The total elastic cross section $\sigma$ can be expressed via Wentzel cross section
|
|---|
| 54 | (\ref{singscat.a2})
|
|---|
| 55 | \begin{equation}
|
|---|
| 56 | \frac{d\sigma(\theta)}{d\Omega}= \frac{d\sigma^{(W)}(\theta)}{d\Omega}\left(\frac{1}{(1 + \frac{(qR_N)^2}{12})^2} + \frac{1}{Z}\right),
|
|---|
| 57 | \label{singscat.a4}
|
|---|
| 58 | \end{equation}
|
|---|
| 59 | where $q$ is momentum transfer to the nucleus, $R_N$ is nuclear radius. This term takes into
|
|---|
| 60 | account nuclear size effect \cite{singscat.kokoulin}, the second term takes into account scattering off
|
|---|
| 61 | electrons. The results of simulation with the single scattering model (Fig.\ref{plot:Alumin})
|
|---|
| 62 | are competitive with the results of the multiple scattering.
|
|---|
| 63 | \begin{figure}[htbp]
|
|---|
| 64 | \center
|
|---|
| 65 | \includegraphics[scale=0.4]{electromagnetic/standard/al.eps}
|
|---|
| 66 | \caption{Scattering of muons off 1.5 mm aluminum foil: data \cite{singscat.attwood} - black squares;
|
|---|
| 67 | simulation - colored markers corresponding
|
|---|
| 68 | different options of multiple scattering and single scattering model; in the bottom
|
|---|
| 69 | plot - relative difference between the simulation and the data in percents;
|
|---|
| 70 | hashed area demonstrates one standard
|
|---|
| 71 | deviation of the data.}
|
|---|
| 72 | \label{plot:Alumin}
|
|---|
| 73 | \end{figure}
|
|---|
| 74 | \noindent
|
|---|
| 75 |
|
|---|
| 76 | \subsection{Implementation Details}
|
|---|
| 77 |
|
|---|
| 78 | The total cross section of the process is obtained as a result of integration
|
|---|
| 79 | of the differential cross section (\ref{singscat.a4}). The first term of this cross section
|
|---|
| 80 | is integrated in the interval $(0,\pi)$. The second term in the smaller interval $(0,\theta_m)$,
|
|---|
| 81 | where $\theta_m$ is the maximum scattering angle off electrons, which is determined using the cut value
|
|---|
| 82 | for the delta electron production. Before sampling of angular distribution the random
|
|---|
| 83 | choice is performed between scattering off the nucleus and off electrons.
|
|---|
| 84 |
|
|---|
| 85 | \subsection{Status of this document}
|
|---|
| 86 | 06.12.07 created by V. Ivanchenko \\
|
|---|
| 87 |
|
|---|
| 88 | \begin{latexonly}
|
|---|
| 89 |
|
|---|
| 90 | \begin{thebibliography}{99}
|
|---|
| 91 |
|
|---|
| 92 | \bibitem{singscat.urban} L.~Urban, A multiple scattering model,
|
|---|
| 93 | {\em CERN-OPEN-2006-077, Dec 2006. 18 pp.}
|
|---|
| 94 | \bibitem{singscat.wentzel}G.~Wentzel,
|
|---|
| 95 | {\em Z. Phys. 40 (1927) 590.}
|
|---|
| 96 | \bibitem{singscat.bethe}H.A.~Bethe,
|
|---|
| 97 | {\em Phys. Rev. 89 (1953) 1256.}
|
|---|
| 98 | \bibitem{singscat.penelope}J.M.~Fernandez-Varea et al.
|
|---|
| 99 | {\em NIM B 73 (1993) 447.}
|
|---|
| 100 | \bibitem{singscat.kokoulin} A.V.~Butkevich et al.,
|
|---|
| 101 | {\em NIM A 488 (2002) 282. }
|
|---|
| 102 | \bibitem{singscat.attwood} D.~Attwood et al.
|
|---|
| 103 | {\em NIM B 251 (2006) 41.}
|
|---|
| 104 | \end{thebibliography}
|
|---|
| 105 |
|
|---|
| 106 | \end{latexonly}
|
|---|
| 107 |
|
|---|
| 108 | \begin{htmlonly}
|
|---|
| 109 |
|
|---|
| 110 | \subsection{Bibliography}
|
|---|
| 111 |
|
|---|
| 112 | \begin{enumerate}
|
|---|
| 113 |
|
|---|
| 114 | \item L.~Urban, A multiple scattering model,
|
|---|
| 115 | {\em CERN-OPEN-2006-077, Dec 2006. 18 pp.}
|
|---|
| 116 | \item G.~Wentzel,
|
|---|
| 117 | {\em Z. Phys. 40 (1927) 590.}
|
|---|
| 118 | \item H.A.~Bethe,
|
|---|
| 119 | {\em Phys. Rev. 89 (1953) 1256.}
|
|---|
| 120 | \item J.M.~Fernandez-Varea et al.
|
|---|
| 121 | {\em NIM B 73 (1993) 447.}
|
|---|
| 122 | \item A.V.~Butkevich et al.,
|
|---|
| 123 | {\em NIM A 488 (2002) 282. }
|
|---|
| 124 | \item D.~Attwood et al.
|
|---|
| 125 | {\em NIM B 251 (2006) 41.}
|
|---|
| 126 | \end{enumerate}
|
|---|
| 127 |
|
|---|
| 128 | \end{htmlonly}
|
|---|
| 129 |
|
|---|
| 130 |
|
|---|
| 131 |
|
|---|