| 1 | \section[Synchrotron Radiation]{Synchrotron Radiation}
|
|---|
| 2 |
|
|---|
| 3 | Synchrotron radiation photons are produced when ultra-relativistic electrons
|
|---|
| 4 | travel along an approximately circular path. In the following treatment,
|
|---|
| 5 | the magnetic field is assumed to be constant and uniform, and the radius of
|
|---|
| 6 | curvature of the electron is assumed to be constant over its trajectory.
|
|---|
| 7 |
|
|---|
| 8 | \subsection{Spectral and Angular Distributions of Synchrotron Radiation}
|
|---|
| 9 |
|
|---|
| 10 | The spectral distribution of the mean number of synchrotron radiation
|
|---|
| 11 | photons, $d\bar{N}/d\omega$, produced by an ultra-relativistic electron
|
|---|
| 12 | along a circular trajectory of length $L$, can be expressed in terms of the
|
|---|
| 13 | mean energy loss spectrum $d\bar{\Delta}/d\omega$ \cite{synch.maier}:
|
|---|
| 14 |
|
|---|
| 15 | \begin{equation}
|
|---|
| 16 | \label{synch.a}
|
|---|
| 17 | \frac{d\bar{N}}{d\omega} = \frac{1}{\omega}\frac{d\bar{\Delta}}{d\omega} =
|
|---|
| 18 | \frac{\sqrt{3}}{2\pi}\alpha\left(\frac{L\gamma}{R}\right)\frac{1}{\omega_{c}}
|
|---|
| 19 | \int_{\omega/\omega_{c}}^{\infty}K_{5/3}(\eta)d\eta .
|
|---|
| 20 | \end{equation}
|
|---|
| 21 |
|
|---|
| 22 | Here,
|
|---|
| 23 | \begin{eqnarray*}
|
|---|
| 24 | \omega & & \mbox{photon energy} \\
|
|---|
| 25 | \alpha & & \mbox{fine structure constant} \\
|
|---|
| 26 | R & & \mbox{instantaneous radius of curvature of the trajectory} \\
|
|---|
| 27 | K & & \mbox{Macdonald function} \\
|
|---|
| 28 | \omega_c = 1.5\beta(\hbar c/R)\gamma^3 & & \mbox{characteristic energy of synchrotron radiation.} \\
|
|---|
| 29 | \end{eqnarray*}
|
|---|
| 30 | $\beta$ is the ratio of the electron velocity $v$ to $c$,
|
|---|
| 31 | $\gamma = 1/\sqrt{1 - \beta^2}$, and $\eta$ is an arbitrary integration
|
|---|
| 32 | variable. In the SI system of units: $R(m) = P(GeV/c)/0.3B_{\bot}(T)$ ,
|
|---|
| 33 | where $B_{\bot}$ is the component of magnetic flux density perpendicular to
|
|---|
| 34 | the electron velocity, and $P$ is the electron momentum.
|
|---|
| 35 |
|
|---|
| 36 | In order to simulate the energy spectrum of synchrotron radiation using
|
|---|
| 37 | the Monte Carlo method, $\bar{N}_{>\omega}$, the mean number of photons
|
|---|
| 38 | above a given energy $\omega$, must be determined. This is done by
|
|---|
| 39 | integrating Eq.~\ref{synch.a} over energy, after first transforming
|
|---|
| 40 | $d\bar{N}/d\omega$ by using the integral representation of the Macdonald
|
|---|
| 41 | function \cite{synch.abram}:
|
|---|
| 42 |
|
|---|
| 43 | \begin{eqnarray}
|
|---|
| 44 | \label{synch.b}
|
|---|
| 45 | \bar{N}_{>\omega}& = &
|
|---|
| 46 | \int_{\omega}^{\infty}\frac{d\bar{N}}{d\omega'}d\omega' \nonumber\\
|
|---|
| 47 | & = &
|
|---|
| 48 | \frac{\sqrt{3}}{2\pi}\alpha\left(\frac{L\gamma}{R}\right)
|
|---|
| 49 | \int_0^{\infty}\frac{\cosh\left(\frac{5}{3}t\right)}{\cosh^2(t)}
|
|---|
| 50 | \exp\left[-\frac{\omega}{\omega_c}\cosh(t)\right]dt .
|
|---|
| 51 | \end{eqnarray}
|
|---|
| 52 | Here, $t$ is also an arbitrary integration variable. The latter integral
|
|---|
| 53 | is calculated numerically by the quadrature Laguerre
|
|---|
| 54 | formula \cite{synch.korn}. Calculations indicate that about 50 roots of
|
|---|
| 55 | the Laguerre polynomials are required in order for the accuracy of the
|
|---|
| 56 | integral estimation to be better than $10^{-4}$ \cite{synch.bag}.
|
|---|
| 57 |
|
|---|
| 58 | The Monte Carlo method also requires the mean number of synchrotron
|
|---|
| 59 | radiation photons at all energies, $\bar{N}$ (= $\bar{N}_{>0}$), in order
|
|---|
| 60 | to determine the next occurrence of synchrotron radiation along a
|
|---|
| 61 | trajectory, and to normalize the spectral distribution of the radiation.
|
|---|
| 62 | Setting $\omega = 0$ in Eq.~\ref{synch.b} yields
|
|---|
| 63 | \begin{eqnarray}
|
|---|
| 64 | \bar{N} = \bar{N}_{>0}& = &
|
|---|
| 65 | \frac{\sqrt{3}}{2\pi}\alpha\left(\frac{L\gamma}{R}\right)
|
|---|
| 66 | \int_0^{\infty}\frac{\cosh\left(\frac{5}{3}t\right)}{\cosh^2(t)}dt \nonumber\\
|
|---|
| 67 | & = &
|
|---|
| 68 | \frac{5}{2\sqrt{3}}\alpha\left(\frac{L\gamma}{R}\right) \approx
|
|---|
| 69 | 10^{-2}\left(\frac{L\gamma}{R}\right) .
|
|---|
| 70 | \end{eqnarray}
|
|---|
| 71 |
|
|---|
| 72 | Qualitatively this result can be manipulated using the fact that the mean
|
|---|
| 73 | number of photons produced along the formation zone length
|
|---|
| 74 | $z \approx R/\gamma$ is proportional to $\alpha$. Then for length $L$,
|
|---|
| 75 | $\bar{N} \approx \alpha L/(R/\gamma)$. Note that when $\gamma\gg1$, and
|
|---|
| 76 | $R \sim \gamma$, $\bar{N}$ does not depend on the electron energy but is
|
|---|
| 77 | defined by the values of $L$ and $B_{\bot}$ only. Instead, it is the mean
|
|---|
| 78 | energy loss due to synchrotron radiation $\bar\Delta$, corresponding to a
|
|---|
| 79 | trajectory of length $L$, that displays the characteristic
|
|---|
| 80 | relativistic rise:
|
|---|
| 81 |
|
|---|
| 82 | \begin{equation}
|
|---|
| 83 | \bar{\Delta} = \int_0^{\infty}\omega\frac{d\bar{N}}{d\omega}d\omega =
|
|---|
| 84 | \frac{2}{3}\alpha\hbar c\left(\frac{L\gamma^2}{R^2}\right)\beta\gamma^2 =
|
|---|
| 85 | \frac{8\bar{N}}{15\sqrt{3}}\omega_{c}
|
|---|
| 86 | \approx 0.31\bar{N}\omega_{c} \sim \gamma^2 .
|
|---|
| 87 | \end{equation}
|
|---|
| 88 |
|
|---|
| 89 | The angular distribution of synchrotron radiation produced by
|
|---|
| 90 | ultra-relativistic electrons shows a clear 'searchlight' effect. Most of
|
|---|
| 91 | the photons are radiated within an angular range of order $1/\gamma$
|
|---|
| 92 | centered on the electron trajectory direction. In the interesting region
|
|---|
| 93 | of $\gamma > 10^3$ the angular resolution of X-ray and gamma detectors
|
|---|
| 94 | usually does not allow the details of the angular distribution to be
|
|---|
| 95 | measured. Therefore, the angular distribution is set to be flat in the
|
|---|
| 96 | range $0 - 1/\gamma$.
|
|---|
| 97 |
|
|---|
| 98 | \subsection{Simulating Synchrotron Radiation}
|
|---|
| 99 |
|
|---|
| 100 | The distance $x$ along the electron/positron trajectory to the next
|
|---|
| 101 | occurrence of a synchrotron radiation photon is simulated according to the
|
|---|
| 102 | exponential distribution, $exp(-x\bar{N}/L)$. The energy $\omega$ of the
|
|---|
| 103 | photon is simulated according to the distribution
|
|---|
| 104 | $\bar{N}_{>\omega}/\bar{N}$. The direction of the photon
|
|---|
| 105 | ($\theta$, $\varphi$) is generated relative to the local $z$-axis which is
|
|---|
| 106 | taken to be along the instantaneous direction of the electron. $\theta$
|
|---|
| 107 | and $\varphi$ are distributed randomly in the ranges [0, $1/\gamma$] and
|
|---|
| 108 | [0, $2\pi$], respectively.
|
|---|
| 109 |
|
|---|
| 110 | \subsection{Status of this document}
|
|---|
| 111 | 15.10.98 created by V.Grichine \\
|
|---|
| 112 | 02.12.02 re-written by D.H. Wright \\
|
|---|
| 113 |
|
|---|
| 114 | \begin{latexonly}
|
|---|
| 115 |
|
|---|
| 116 | \begin{thebibliography}{99}
|
|---|
| 117 |
|
|---|
| 118 | \bibitem{synch.maier} R. Maier,
|
|---|
| 119 | {\em Synchrotron Radiation, CERN Report 91-04, 97-115} (1991).
|
|---|
| 120 |
|
|---|
| 121 | \bibitem{synch.abram} Edited by M. Abramovwitz and I.A. Stegan,
|
|---|
| 122 | {\em Handbook of Mathemaatical Functions,
|
|---|
| 123 | NBS Applied Mathematics Series 55} (1964).
|
|---|
| 124 |
|
|---|
| 125 | \bibitem{synch.korn}G.A. Korn and T.M. Korn,
|
|---|
| 126 | {\em Mathematical Handbook for scientists and
|
|---|
| 127 | engineers, McGRAW-HILL BOOK COMPANY, INC} (1961).
|
|---|
| 128 |
|
|---|
| 129 | \bibitem{synch.bag} A.V. Bagulya and V.M. Grichine,
|
|---|
| 130 | {Bulletin of Lebedev Institute, no.9-10, 7 } (1998).
|
|---|
| 131 |
|
|---|
| 132 | \end{thebibliography}
|
|---|
| 133 |
|
|---|
| 134 | \end{latexonly}
|
|---|
| 135 |
|
|---|
| 136 | \begin{htmlonly}
|
|---|
| 137 |
|
|---|
| 138 | \subsection{Bibliography}
|
|---|
| 139 |
|
|---|
| 140 | \begin{enumerate}
|
|---|
| 141 | \item R. Maier,
|
|---|
| 142 | {\em Synchrotron Radiation, CERN Report 91-04, 97-115} (1991).
|
|---|
| 143 |
|
|---|
| 144 | \item Edited by M. Abramovwitz and I.A. Stegan,
|
|---|
| 145 | {\em Handbook of Mathemaatical Functions,
|
|---|
| 146 | NBS Applied Mathematics Series 55} (1964).
|
|---|
| 147 |
|
|---|
| 148 | \item G.A. Korn and T.M. Korn,
|
|---|
| 149 | {\em Mathematical Handbook for scientists and
|
|---|
| 150 | engineers, McGRAW-HILL BOOK COMPANY, INC} (1961).
|
|---|
| 151 |
|
|---|
| 152 | \item A.V. Bagulya and V.M. Grichine,
|
|---|
| 153 | {Bulletin of Lebedev Institute, no.9-10, 7 } (1998).
|
|---|
| 154 |
|
|---|
| 155 | \end{enumerate}
|
|---|
| 156 |
|
|---|
| 157 | \end{htmlonly}
|
|---|