source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/electromagnetic/standard/synch.tex @ 1345

Last change on this file since 1345 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 6.4 KB
Line 
1\section[Synchrotron Radiation]{Synchrotron Radiation}
2
3Synchrotron radiation photons are produced when ultra-relativistic electrons
4travel along an approximately circular path.  In the following treatment,
5the magnetic field is assumed to be constant and uniform, and the radius of
6curvature of the electron is assumed to be constant over its trajectory.
7
8\subsection{Spectral and Angular Distributions of Synchrotron Radiation}
9
10The spectral distribution of the mean number of synchrotron radiation
11photons, $d\bar{N}/d\omega$, produced by an ultra-relativistic electron
12along a circular trajectory of length $L$, can be expressed in terms of the
13mean energy loss spectrum $d\bar{\Delta}/d\omega$ \cite{synch.maier}:
14
15\begin{equation}
16\label{synch.a}
17\frac{d\bar{N}}{d\omega} = \frac{1}{\omega}\frac{d\bar{\Delta}}{d\omega} =
18\frac{\sqrt{3}}{2\pi}\alpha\left(\frac{L\gamma}{R}\right)\frac{1}{\omega_{c}}
19\int_{\omega/\omega_{c}}^{\infty}K_{5/3}(\eta)d\eta   .
20\end{equation}
21
22Here,
23\begin{eqnarray*}
24\omega   &  & \mbox{photon energy} \\
25\alpha   &  & \mbox{fine structure constant} \\
26R        &  & \mbox{instantaneous radius of curvature of the trajectory} \\ 
27K        &  & \mbox{Macdonald function} \\
28\omega_c = 1.5\beta(\hbar c/R)\gamma^3 &  & \mbox{characteristic energy of synchrotron radiation.} \\   
29\end{eqnarray*} 
30$\beta$ is the ratio of the electron velocity $v$ to $c$,
31$\gamma = 1/\sqrt{1 - \beta^2}$, and $\eta$ is an arbitrary integration
32variable.  In the SI system of units: $R(m) = P(GeV/c)/0.3B_{\bot}(T)$ ,
33where $B_{\bot}$ is the component of magnetic flux density perpendicular to
34the electron velocity, and $P$ is the electron momentum.
35
36In order to simulate the energy spectrum of synchrotron radiation using
37the Monte Carlo method, $\bar{N}_{>\omega}$, the mean number of photons
38above a given energy $\omega$, must be determined.  This is done by
39integrating Eq.~\ref{synch.a} over energy, after first transforming 
40$d\bar{N}/d\omega$ by using the integral representation of the Macdonald
41function \cite{synch.abram}:
42
43\begin{eqnarray}
44\label{synch.b}
45\bar{N}_{>\omega}& = &
46\int_{\omega}^{\infty}\frac{d\bar{N}}{d\omega'}d\omega' \nonumber\\
47& = &
48\frac{\sqrt{3}}{2\pi}\alpha\left(\frac{L\gamma}{R}\right)
49\int_0^{\infty}\frac{\cosh\left(\frac{5}{3}t\right)}{\cosh^2(t)}
50\exp\left[-\frac{\omega}{\omega_c}\cosh(t)\right]dt .
51\end{eqnarray}
52Here, $t$ is also an arbitrary integration variable.  The latter integral
53is calculated numerically by the quadrature Laguerre
54formula \cite{synch.korn}.  Calculations indicate that about 50 roots of
55the Laguerre polynomials are required in order for the accuracy of the
56integral estimation to be better than $10^{-4}$ \cite{synch.bag}
57
58The Monte Carlo method also requires the mean number of synchrotron
59radiation photons at all energies, $\bar{N}$  (= $\bar{N}_{>0}$), in order
60to determine the next occurrence of synchrotron radiation along a
61trajectory, and to normalize the spectral distribution of the radiation.
62Setting $\omega = 0$ in Eq.~\ref{synch.b} yields
63\begin{eqnarray}
64\bar{N} = \bar{N}_{>0}& = & 
65\frac{\sqrt{3}}{2\pi}\alpha\left(\frac{L\gamma}{R}\right)
66\int_0^{\infty}\frac{\cosh\left(\frac{5}{3}t\right)}{\cosh^2(t)}dt \nonumber\\
67& = &
68\frac{5}{2\sqrt{3}}\alpha\left(\frac{L\gamma}{R}\right) \approx 
6910^{-2}\left(\frac{L\gamma}{R}\right) .
70\end{eqnarray}
71
72Qualitatively this result can be manipulated using the fact that the mean
73number of photons produced along the formation zone length
74$z \approx R/\gamma$ is proportional to $\alpha$.  Then for length $L$,
75$\bar{N} \approx \alpha L/(R/\gamma)$.  Note that when $\gamma\gg1$, and
76$R \sim \gamma$, $\bar{N}$ does not depend on the electron energy but is
77defined by the values of $L$ and $B_{\bot}$ only.  Instead, it is the mean
78energy loss due to synchrotron radiation $\bar\Delta$, corresponding to a
79trajectory of length $L$, that displays the characteristic
80relativistic rise:
81
82\begin{equation}
83\bar{\Delta} = \int_0^{\infty}\omega\frac{d\bar{N}}{d\omega}d\omega =
84\frac{2}{3}\alpha\hbar c\left(\frac{L\gamma^2}{R^2}\right)\beta\gamma^2 =   
85\frac{8\bar{N}}{15\sqrt{3}}\omega_{c} 
86\approx 0.31\bar{N}\omega_{c} \sim \gamma^2 .
87\end{equation}
88
89The angular distribution of synchrotron radiation produced by
90ultra-relativistic electrons shows a clear 'searchlight' effect.  Most of
91the photons are radiated within an angular range of order $1/\gamma$
92centered on the electron trajectory direction.  In the interesting region
93of $\gamma > 10^3$ the angular resolution of X-ray and gamma detectors
94usually does not allow the details of the angular distribution to be
95measured.  Therefore, the angular distribution is set to be flat in the
96range $0 - 1/\gamma$.
97
98\subsection{Simulating Synchrotron Radiation}
99
100The distance $x$ along the electron/positron trajectory to the next
101occurrence of a synchrotron radiation photon is simulated according to the
102exponential distribution, $exp(-x\bar{N}/L)$.  The energy $\omega$ of the
103photon is simulated according to the distribution
104$\bar{N}_{>\omega}/\bar{N}$.  The direction of the photon
105($\theta$, $\varphi$) is generated relative to the local $z$-axis which is
106taken to be along the instantaneous direction of the electron.  $\theta$
107and $\varphi$ are distributed randomly in the ranges [0, $1/\gamma$] and
108[0, $2\pi$], respectively.
109
110\subsection{Status of this document}
11115.10.98 created by V.Grichine \\
11202.12.02 re-written by D.H. Wright \\
113
114\begin{latexonly}
115
116\begin{thebibliography}{99}
117
118\bibitem{synch.maier}  R. Maier,
119{\em Synchrotron Radiation, CERN Report 91-04, 97-115} (1991).
120
121\bibitem{synch.abram} Edited by M. Abramovwitz and I.A. Stegan,
122{\em Handbook of Mathemaatical Functions,
123 NBS Applied Mathematics Series 55} (1964).
124
125\bibitem{synch.korn}G.A. Korn and T.M. Korn,
126{\em Mathematical Handbook for scientists and
127    engineers, McGRAW-HILL BOOK COMPANY, INC} (1961).
128
129\bibitem{synch.bag} A.V. Bagulya and V.M. Grichine,
130{Bulletin of Lebedev Institute, no.9-10, 7 } (1998).
131
132\end{thebibliography}
133
134\end{latexonly}
135
136\begin{htmlonly}
137
138\subsection{Bibliography}
139
140\begin{enumerate}
141\item  R. Maier,
142{\em Synchrotron Radiation, CERN Report 91-04, 97-115} (1991).
143
144\item Edited by M. Abramovwitz and I.A. Stegan,
145{\em Handbook of Mathemaatical Functions,
146 NBS Applied Mathematics Series 55} (1964).
147
148\item G.A. Korn and T.M. Korn,
149{\em Mathematical Handbook for scientists and
150    engineers, McGRAW-HILL BOOK COMPANY, INC} (1961).
151
152\item A.V. Bagulya and V.M. Grichine,
153{Bulletin of Lebedev Institute, no.9-10, 7 } (1998).
154
155\end{enumerate}
156
157\end{htmlonly}
Note: See TracBrowser for help on using the repository browser.