\\ $x$ is a kinetic variable of the particle : $ x = \log_{10}(\gamma \beta) = \ln(\gamma^{2} \beta^{2})/4.606 $, \linebreak and $\delta(x)$ is defined by \begin{equation} % \label{muion.de1} \begin{array}{rll} \mbox{for} & x < x_0 : & \delta(x) = 0 \\ \mbox{for} & x \in [x_0,\ x_1] : & \delta(x) = 4.606 x - C + a(x_1 - x)^m \\ \mbox{for} & x > x_1 : & \delta(x) = 4.606 x - C \end{array} \end{equation} where the matter-dependent constants are calculated as follows: \begin{equation} % \label{muion.de2} \begin{array}{lcl} h\nu_p & = & \mbox{ plasma energy of the medium } = \sqrt{4\pi n_{el} r_e^3} mc^2/\alpha = \sqrt{4\pi n_{el} r_e} \hbar c \\ C & = & 1 + 2 \ln (I/h\nu_p) \\ x_a & = & C/4.606 \\ a & = & 4.606(x_a - x_0)/(x_1 - x_0)^m \\ m & = & 3 . \end{array} \end{equation} For condensed media $$ \begin{array}{ll} I < 100 \: \mbox{eV} & \left \{ \begin{array}{rll} \mbox{for } C \leq 3.681 & x_0 = 0.2 & x_1 = 2 \\ \mbox{for } C > 3.681 & x_0 = 0.326 C - 1.0 & x_1 = 2 \end{array} \right . \\ I \geq 100 \: \mbox{eV} & \left \{ \begin{array}{rll} \mbox{for } C \leq 5.215 & x_0 = 0.2 & x_1 = 3 \\ \mbox{for } C > 5.215 & x_0 = 0.326 C - 1.5 & x_1 = 3 \end{array} \right . \end{array} $$ and for gaseous media \[ \begin{array}{rlll} \mbox{for} & C < 10. & x_0 = 1.6 & x_1 = 4 \\ \mbox{for} & C \in [10.0,\ 10.5[ & x_0 = 1.7 & x_1 = 4 \\ \mbox{for} & C \in [10.5,\ 11.0[ & x_0 = 1.8 & x_1 = 4 \\ \mbox{for} & C \in [11.0,\ 11.5[ & x_0 = 1.9 & x_1 = 4 \\ \mbox{for} & C \in [11.5,\ 12.25[ & x_0 = 2. & x_1 = 4 \\ \mbox{for} & C \in [12.25,\ 13.804[ & x_0 = 2. & x_1 = 5 \\ \mbox{for} & C \geq 13.804 & x_0 = 0.326 C -2.5 & x_1 = 5 . \end{array} \]