| 1 | \section{Energy loss fluctuations} \label{gen_fluctuations}
|
|---|
| 2 |
|
|---|
| 3 | The total continuous energy loss of charged particles is a stochastic
|
|---|
| 4 | quantity with a distribution described in terms of a straggling function.
|
|---|
| 5 | The straggling is partially taken into account in the simulation
|
|---|
| 6 | of energy loss by the production of $\delta$-electrons with energy
|
|---|
| 7 | $T > T_{cut}$ (\ref{comion.b}).
|
|---|
| 8 | However, continuous energy loss (\ref{comion.a}) also has fluctuations.
|
|---|
| 9 | Hence in the current GEANT4 implementation different models of fluctuations
|
|---|
| 10 | implementing the $G4VEmFluctuationModel$ interface:
|
|---|
| 11 | \begin{itemize}
|
|---|
| 12 | \item
|
|---|
| 13 | G4BohrFluctuations;
|
|---|
| 14 | \item
|
|---|
| 15 | G4IonFluctuations;
|
|---|
| 16 | \item
|
|---|
| 17 | G4PAIModel;
|
|---|
| 18 | \item
|
|---|
| 19 | G4PAIPhotonModel;
|
|---|
| 20 | \item
|
|---|
| 21 | G4UniversalFluctuation.
|
|---|
| 22 | \end{itemize}
|
|---|
| 23 | The last model is the default one used in main Physics List and will be described below.
|
|---|
| 24 | Other models have limited applicability and will be described in chapters for ion ionisation
|
|---|
| 25 | and PAI models.
|
|---|
| 26 |
|
|---|
| 27 | \subsection{Fluctuations in thick absorbers}
|
|---|
| 28 |
|
|---|
| 29 | The total continuous energy loss of charged particles is a stochastic
|
|---|
| 30 | quantity with a distribution described in terms of a straggling function.
|
|---|
| 31 | The straggling is partially taken into account in the simulation
|
|---|
| 32 | of energy loss by the production of $\delta$-electrons with energy
|
|---|
| 33 | $T > T_c$. However, continuous energy loss also has fluctuations.
|
|---|
| 34 | Hence in the current GEANT4 implementation two different models of
|
|---|
| 35 | fluctuations are applied depending on the value of the parameter $\kappa$
|
|---|
| 36 | which is the lower limit of the number of interactions of the particle in
|
|---|
| 37 | a step. The default value chosen is $\kappa = 10$. In the case of a high
|
|---|
| 38 | range cut (i.e. energy loss without delta ray production)
|
|---|
| 39 | for thick absorbers the following condition should be fulfilled:
|
|---|
| 40 | \begin{equation}
|
|---|
| 41 | \Delta E > \kappa \ T_{max}
|
|---|
| 42 | \label{cond}
|
|---|
| 43 | \end{equation}
|
|---|
| 44 | where $\Delta E$ is the mean continuous energy loss in a track segment of
|
|---|
| 45 | length $s$, and $T_{max}$ is the maximum kinetic energy that can be
|
|---|
| 46 | transferred to the atomic electron. If this condition holds the fluctuation
|
|---|
| 47 | of the total (unrestricted) energy loss follows a Gaussian distribution. It
|
|---|
| 48 | is worth noting that this condition can be true only for heavy particles,
|
|---|
| 49 | because for electrons, $T_{max}=T/2$, and for positrons, $T_{max}=T$, where
|
|---|
| 50 | $T$ is the kinetic energy of the particle.
|
|---|
| 51 | In order to
|
|---|
| 52 | simulate the fluctuation of the continuous (restricted) energy loss, the
|
|---|
| 53 | condition should be modified. After a study, the following conditions
|
|---|
| 54 | have been chosen:
|
|---|
| 55 | \begin{equation}
|
|---|
| 56 | \Delta E > \kappa \ T_c
|
|---|
| 57 | \label{cond2}
|
|---|
| 58 | \end{equation}
|
|---|
| 59 |
|
|---|
| 60 | and
|
|---|
| 61 |
|
|---|
| 62 | \begin{equation}
|
|---|
| 63 | T_{max} <= 2 \ T_c
|
|---|
| 64 | \label{cond3}
|
|---|
| 65 | \end{equation}
|
|---|
| 66 | where $T_c$ is the cut kinetic energy of $\delta$-electrons. For thick
|
|---|
| 67 | absorbers the
|
|---|
| 68 | straggling function approaches the Gaussian distribution with Bohr's
|
|---|
| 69 | variance \cite{eloss.ICRU49}:
|
|---|
| 70 | \begin{equation}
|
|---|
| 71 | \Omega^2 = 2\pi r^2_e m_e c^2 N_{el}\frac{Z_h^2}{\beta^2} T_c s
|
|---|
| 72 | \left(1 - \frac{\beta^2}{2} \right),
|
|---|
| 73 | \label{sig.fluc}
|
|---|
| 74 | \end{equation}
|
|---|
| 75 | where $r_e$ is the classical electron radius, $N_{el}$ is the electron
|
|---|
| 76 | density of the medium, $Z_{h}$ is the charge of the incident particle in
|
|---|
| 77 | units of positron charge, and $\beta$ is the relativistic velocity.
|
|---|
| 78 |
|
|---|
| 79 |
|
|---|
| 80 | \subsection{Fluctuations in thin absorbers}
|
|---|
| 81 | If the conditions \ref{cond2} and \ref{cond3} are not satisfied the model of
|
|---|
| 82 | energy
|
|---|
| 83 | fluctuations in thin absorbers is applied. The formulas used to compute
|
|---|
| 84 | the energy loss fluctuation (straggling) are based on a very simple physics
|
|---|
| 85 | model of the atom. It is assumed that the atoms have only two energy levels
|
|---|
| 86 | with binding energies $E_1$ and $E_2$. The particle-atom interaction can be
|
|---|
| 87 | an excitation with energy loss $E_1$ or $E_2$, or ionisation with energy
|
|---|
| 88 | loss distributed according to a function $g(E) \sim 1/E^2$ :
|
|---|
| 89 | \begin{equation} \label{fluct.eqn0}
|
|---|
| 90 | \int_{E_0}^{T_{up}} g(E)\ dE = 1 \Longrightarrow
|
|---|
| 91 | g(E) = \frac{E_0 T_{up}}{T_{up}-E_0} \frac{1}{E^2} .
|
|---|
| 92 | \end{equation}
|
|---|
| 93 |
|
|---|
| 94 | \noindent
|
|---|
| 95 | The macroscopic cross section for excitation $(i=1,2)$ is
|
|---|
| 96 | \begin{equation} \label{fluct.eqn1}
|
|---|
| 97 | \Sigma_i = C \frac{f_i}{E_i}
|
|---|
| 98 | \frac{\ln[2mc^2 \ (\beta\gamma)^2/E_i]-\beta^2}
|
|---|
| 99 | {\ln[2mc^2 \ (\beta\gamma)^2/I]-\beta^2}\ (1-r)
|
|---|
| 100 | \end{equation}
|
|---|
| 101 | and the ionisation cross section is
|
|---|
| 102 | \begin{equation} \label{fluct.eqn2}
|
|---|
| 103 | \Sigma_3 = C \frac{T_{up}-E_0}
|
|---|
| 104 | {E_0 T_{up}\ln(\frac{T_{up}}{E_0})}\ r
|
|---|
| 105 | \end{equation}
|
|---|
| 106 | where $E_0$ denotes the ionisation energy of the atom, $I$ is the mean
|
|---|
| 107 | ionisation energy, $T_{up}$ is the
|
|---|
| 108 | production threshold for delta ray production (or the maximum energy
|
|---|
| 109 | transfer if this value smaller than the
|
|---|
| 110 | production threshold), $E_i$ and $f_i$ are the energy levels and
|
|---|
| 111 | corresponding oscillator strengths of the atom, and $C$ and $r$ are model
|
|---|
| 112 | parameters.
|
|---|
| 113 | \noindent
|
|---|
| 114 | The oscillator strengths $f_i$ and energy levels $E_i$ should satisfy the
|
|---|
| 115 | constraints
|
|---|
| 116 | \begin{equation} \label{fluct.eqn3}
|
|---|
| 117 | f_1 + f_2 = 1
|
|---|
| 118 | \end{equation}
|
|---|
| 119 | \begin{equation} \label{fluct.eqn4}
|
|---|
| 120 | f_1 \cdotp lnE_1 + f_2 \cdotp lnE_2 = lnI .
|
|---|
| 121 | \end{equation}
|
|---|
| 122 | The cross section formulas \ref{fluct.eqn1},\ref{fluct.eqn2} and the sum
|
|---|
| 123 | rule equations \ref{fluct.eqn3},\ref{fluct.eqn4} can be found e.g. in
|
|---|
| 124 | Ref. \cite{straggling.bichsel}.
|
|---|
| 125 | \noindent
|
|---|
| 126 | The model parameter $C$ can be defined in the following way. The numbers of
|
|---|
| 127 | collisions ($n_i$, $i=1,2$ for excitation and $3$ for ionisation)
|
|---|
| 128 | follow the Poisson distribution with a mean value $\langle n_i \rangle$.
|
|---|
| 129 | In a step of length $\Delta x$ the mean number of collisions is given by
|
|---|
| 130 | \begin{equation}
|
|---|
| 131 | \langle n_i \rangle = \Delta x \ \Sigma_i
|
|---|
| 132 | \end{equation}
|
|---|
| 133 | The mean energy loss in a step is the sum of the excitation and ionisation
|
|---|
| 134 | contributions and can be written as
|
|---|
| 135 | \begin{equation}
|
|---|
| 136 | \frac{dE}{dx} \cdotp \Delta x =
|
|---|
| 137 | \left \{ \Sigma_1 E_1 + \Sigma_2 E_2 +
|
|---|
| 138 | \int_{E_0}^{T_{up}} E g(E) dE \right \} \Delta x .
|
|---|
| 139 | \end{equation}
|
|---|
| 140 | From this, using Eq. \ref{fluct.eqn1} - \ref{fluct.eqn4}, one can see that
|
|---|
| 141 | \begin{equation}
|
|---|
| 142 | C = dE/dx .
|
|---|
| 143 | \end{equation}
|
|---|
| 144 |
|
|---|
| 145 | \noindent
|
|---|
| 146 | The other parameters in the fluctuation model have been chosen
|
|---|
| 147 | in the following way. $Z \cdotp f_1$ and $Z \cdotp f_2$ represent in
|
|---|
| 148 | the model the number of loosely/tightly bound electrons
|
|---|
| 149 | \begin{equation}
|
|---|
| 150 | f_2 = 0 \hspace {15 pt} for \hspace {15 pt} Z = 1
|
|---|
| 151 | \end{equation}
|
|---|
| 152 | \begin{equation}
|
|---|
| 153 | f_2 = 2/Z \hspace {15 pt} for \hspace {15 pt} Z \geq 2
|
|---|
| 154 | \end{equation}
|
|---|
| 155 | \begin{equation}
|
|---|
| 156 | E_2 = 10 \mbox{ eV } Z^2
|
|---|
| 157 | \end{equation}
|
|---|
| 158 | \begin{equation}
|
|---|
| 159 | E_0 = 10 \mbox{ eV } .
|
|---|
| 160 | \end{equation}
|
|---|
| 161 | Using these parameter values, $E_2$ corresponds approximately to the
|
|---|
| 162 | K-shell energy of the atoms ( and $Z f_2 = 2 $ is the number of K-shell
|
|---|
| 163 | electrons).
|
|---|
| 164 | The parameters $f_1$ and $E_1$ can be obtained from Eqs.~ \ref{fluct.eqn3}
|
|---|
| 165 | and \ref{fluct.eqn4}.
|
|---|
| 166 | \noindent
|
|---|
| 167 | The parameter $r$ is the only variable in the model which can be tuned.
|
|---|
| 168 | This parameter determines the relative contribution of ionisation and
|
|---|
| 169 | excitation to the energy loss. Based on comparisons of simulated energy
|
|---|
| 170 | loss distributions to experimental data, its value has been parametrized
|
|---|
| 171 | as
|
|---|
| 172 | \begin{equation}
|
|---|
| 173 | r = 0.03 + 0.23 \cdotp ln(ln(\frac{T_{up}}{I}))
|
|---|
| 174 | \end{equation}
|
|---|
| 175 |
|
|---|
| 176 | \paragraph{Sampling the energy loss.}
|
|---|
| 177 | The energy loss is computed in the model under the assumption that
|
|---|
| 178 | the step length (or relative energy loss) is small and, in consequence, the
|
|---|
| 179 | cross section can be considered constant along the step. The loss due to
|
|---|
| 180 | the excitation is
|
|---|
| 181 | \begin{equation}
|
|---|
| 182 | \Delta E_{exc} = n_1 E_1 + n_2 E_2
|
|---|
| 183 | \end{equation}
|
|---|
| 184 | where $n_1$ and $n_2$ are sampled from a Poisson distribution. The energy
|
|---|
| 185 | loss due to ionisation can be generated from the distribution $g(E)$
|
|---|
| 186 | by the inverse transformation method :
|
|---|
| 187 | \begin{equation}
|
|---|
| 188 | u = F(E) = \int_{E_0}^E g(x) dx
|
|---|
| 189 | \end{equation}
|
|---|
| 190 | \begin{equation}
|
|---|
| 191 | E = F^{-1}(u) = \frac {E_0}{1-u \frac{T_{up}-E_0}{T_{up}}}
|
|---|
| 192 | \end{equation}
|
|---|
| 193 | where $u$ is a uniformly distributed random number $\in [0,\ 1]$.
|
|---|
| 194 | The contribution coming from the ionisation will then be
|
|---|
| 195 | \begin{equation}
|
|---|
| 196 | \Delta E_{ion} = \sum_{j = 1}^{n3} \frac {E_0}
|
|---|
| 197 | {1-u_j \frac{T_{up}-E_0}{T_{up}}}
|
|---|
| 198 | \end{equation}
|
|---|
| 199 | where $n_3$ is the number of ionisations sampled from the Poisson
|
|---|
| 200 | distribution. The total energy loss in a step will be
|
|---|
| 201 | $ \Delta E = \Delta E_{exc} + \Delta E_{ion}$ and the energy loss
|
|---|
| 202 | fluctuation comes from fluctuations in the number of collisions $n_i$
|
|---|
| 203 | and from the sampling of the ionisation loss.
|
|---|
| 204 |
|
|---|
| 205 | \paragraph{Thick layers}
|
|---|
| 206 | If the mean energy loss and step are in the range of validity of the
|
|---|
| 207 | Gaussian approximation of the fluctuation, the much faster Gaussian
|
|---|
| 208 | sampling is used to compute the actual energy loss.
|
|---|
| 209 |
|
|---|
| 210 | \paragraph{Conclusions}
|
|---|
| 211 | This simple model of energy loss fluctuations is rather fast and can
|
|---|
| 212 | be used for any thickness of material. This has been verified by performing
|
|---|
| 213 | many simulations and comparing the results with experimental data, such
|
|---|
| 214 | as those in Ref.\cite{straggling.lassila}. \\
|
|---|
| 215 | As the limit of validity of Landau's theory is approached, the loss
|
|---|
| 216 | distribution approaches the Landau form smoothly.
|
|---|
| 217 |
|
|---|
| 218 | \subsection{Status of this document}
|
|---|
| 219 | 30.01.02 created by L. Urb\'an\\
|
|---|
| 220 | 28.08.02 updated by V.Ivanchenko\\
|
|---|
| 221 | 17.08.04 moved to common to all charged particles (mma) \\
|
|---|
| 222 | 04.12.04 spelling and grammar check by D.H. Wright \\
|
|---|
| 223 | 04.05.05 updated by L. Urb\'an\\
|
|---|
| 224 | 09.12.05 updated by V.Ivanchenko\\
|
|---|
| 225 | 29.03.07 updated by L. Urb\'an\\
|
|---|
| 226 | 11.12.08 updated by V.Ivanchenko\\
|
|---|
| 227 |
|
|---|
| 228 | \begin{latexonly}
|
|---|
| 229 |
|
|---|
| 230 | \begin{thebibliography}{99}
|
|---|
| 231 | \bibitem{straggling.bichsel} H.~Bichsel
|
|---|
| 232 | {\em Rev.Mod.Phys. 60 (1988) 663}
|
|---|
| 233 | \bibitem{straggling.lassila} K.~Lassila-Perini, L.Urb\'an
|
|---|
| 234 | {\em Nucl.Inst.Meth. A362(1995) 416}
|
|---|
| 235 | \bibitem{eloss.geant3} {\sc geant3} manual
|
|---|
| 236 | {\em Cern Program Library Long Writeup W5013 (1994)}
|
|---|
| 237 | \bibitem{eloss.ICRU49}ICRU (A.~Allisy et al),
|
|---|
| 238 | Stopping Powers and Ranges for Protons and Alpha
|
|---|
| 239 | Particles, {\em ICRU Report 49 (1993)}.
|
|---|
| 240 | \end{thebibliography}
|
|---|
| 241 |
|
|---|
| 242 | \end{latexonly}
|
|---|
| 243 |
|
|---|
| 244 | \begin{htmlonly}
|
|---|
| 245 |
|
|---|
| 246 | \subsection{Bibliography}
|
|---|
| 247 |
|
|---|
| 248 | \begin{enumerate}
|
|---|
| 249 | \item H.~Bichsel {\em Rev.Mod.Phys. 60 (1988) 663}
|
|---|
| 250 | \item K.~Lassila-Perini, L.Urb\'an
|
|---|
| 251 | {\em Nucl.Inst.Meth. A362(1995) 416}
|
|---|
| 252 | \item {\sc geant3} manual
|
|---|
| 253 | {\em Cern Program Library Long Writeup W5013 (1994)}.
|
|---|
| 254 | \item ICRU (A.~Allisy et al),
|
|---|
| 255 | Stopping Powers and Ranges for Protons and Alpha
|
|---|
| 256 | Particles, {\em ICRU Report 49 (1993)}.
|
|---|
| 257 | \end{enumerate}
|
|---|
| 258 |
|
|---|
| 259 | \end{htmlonly}
|
|---|