source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/electromagnetic/utils/fluctuations.tex @ 1288

Last change on this file since 1288 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 10.1 KB
Line 
1\section{Energy loss fluctuations}  \label{gen_fluctuations}
2
3The total continuous energy loss of charged particles is a stochastic
4quantity with a distribution described in terms of a straggling function.
5The straggling is partially taken into account in the simulation
6of energy loss by the production of $\delta$-electrons with energy
7$T > T_{cut}$ (\ref{comion.b}). 
8However, continuous energy loss (\ref{comion.a}) also has fluctuations.
9Hence in the current GEANT4 implementation different models of fluctuations
10implementing the $G4VEmFluctuationModel$ interface: 
11\begin{itemize}
12\item
13G4BohrFluctuations;
14\item
15G4IonFluctuations;
16\item
17G4PAIModel;
18\item
19G4PAIPhotonModel;
20\item
21G4UniversalFluctuation.
22\end{itemize}
23The last model is the default one used in main Physics List and will be described below.
24Other models have limited applicability and will be described in chapters for ion ionisation
25and PAI models.
26
27\subsection{Fluctuations in thick absorbers}
28
29The total continuous energy loss of charged particles is a stochastic
30quantity with a distribution described in terms of a straggling function.
31The straggling is partially taken into account in the simulation
32of energy loss by the production of $\delta$-electrons with energy
33$T > T_c$.  However, continuous energy loss also has fluctuations.
34Hence in the current GEANT4 implementation two different models of
35fluctuations are applied depending on the value of the parameter $\kappa$
36which is the lower limit of the number of interactions of the particle in
37a step.  The default value chosen is $\kappa = 10$. In the case of a high
38range cut (i.e. energy loss without delta ray production)
39for thick absorbers the following condition should be fulfilled:
40\begin{equation}
41\Delta E > \kappa \ T_{max}
42\label{cond}
43\end{equation}
44where $\Delta E$ is the mean continuous energy loss in a track segment of
45length $s$, and $T_{max}$ is the maximum kinetic energy that can be
46transferred to the atomic electron. If this condition holds the fluctuation
47of the total (unrestricted) energy loss follows a  Gaussian distribution. It
48is worth noting that this condition can be true only for heavy particles,
49because for electrons, $T_{max}=T/2$, and for positrons, $T_{max}=T$, where
50$T$ is the kinetic energy of the particle.
51 In order to
52simulate the fluctuation of the continuous (restricted) energy loss, the
53condition should be modified. After a study, the following conditions
54have been chosen:
55\begin{equation}
56\Delta E > \kappa \ T_c
57\label{cond2}
58\end{equation}
59
60 and
61
62\begin{equation}
63T_{max} <=    2  \ T_c
64\label{cond3}
65\end{equation}
66where  $T_c$ is the cut kinetic energy of $\delta$-electrons.  For thick
67absorbers the
68straggling function approaches the Gaussian distribution with Bohr's
69variance \cite{eloss.ICRU49}:
70\begin{equation}
71\Omega^2 = 2\pi r^2_e m_e c^2 N_{el}\frac{Z_h^2}{\beta^2} T_c s
72\left(1 - \frac{\beta^2}{2} \right),
73\label{sig.fluc}
74\end{equation}
75where $r_e$ is the classical electron radius, $N_{el}$ is the electron
76density of the medium, $Z_{h}$ is the charge of the incident particle in
77units of positron charge, and $\beta$ is the relativistic velocity.
78
79
80\subsection{Fluctuations in thin absorbers}
81If the conditions \ref{cond2} and \ref{cond3} are not satisfied the model of
82energy
83fluctuations in thin absorbers is applied.  The formulas used to compute
84the energy loss fluctuation (straggling) are based on a very simple physics
85model of the atom.  It is assumed that the atoms have only two energy levels
86with binding energies $E_1$ and $E_2$. The particle-atom interaction can be
87an excitation with energy loss $E_1$ or $E_2$, or ionisation with energy
88loss distributed according to a function $g(E) \sim 1/E^2$ :
89\begin{equation} \label{fluct.eqn0}
90\int_{E_0}^{T_{up}} g(E)\ dE = 1 \Longrightarrow
91     g(E) = \frac{E_0 T_{up}}{T_{up}-E_0} \frac{1}{E^2} .
92\end{equation}
93
94\noindent
95The macroscopic cross section for excitation $(i=1,2)$ is
96\begin{equation} \label{fluct.eqn1}
97  \Sigma_i = C \frac{f_i}{E_i}
98               \frac{\ln[2mc^2 \ (\beta\gamma)^2/E_i]-\beta^2}
99                    {\ln[2mc^2 \ (\beta\gamma)^2/I]-\beta^2}\ (1-r)
100\end{equation}
101and the ionisation cross section is
102\begin{equation}  \label{fluct.eqn2}
103     \Sigma_3 = C \frac{T_{up}-E_0}
104         {E_0 T_{up}\ln(\frac{T_{up}}{E_0})}\ r
105\end{equation}
106where $E_0$ denotes the ionisation energy of the atom, $I$ is the mean
107ionisation energy, $T_{up}$ is the
108production threshold for delta ray production (or the maximum energy
109transfer if this value smaller than the
110production threshold), $E_i$ and $f_i$ are the energy levels and
111corresponding oscillator strengths of the atom, and $C$ and $r$ are model
112parameters.
113\noindent
114The oscillator strengths $f_i$ and energy levels $E_i$ should satisfy the
115constraints
116   \begin{equation}  \label{fluct.eqn3}
117        f_1 + f_2 = 1
118   \end{equation}
119   \begin{equation}   \label{fluct.eqn4}
120        f_1 \cdotp lnE_1 + f_2 \cdotp lnE_2 = lnI .
121   \end{equation}
122The cross section formulas \ref{fluct.eqn1},\ref{fluct.eqn2} and the sum
123rule equations \ref{fluct.eqn3},\ref{fluct.eqn4} can be found e.g. in
124Ref. \cite{straggling.bichsel}.
125\noindent
126The model parameter $C$ can be defined in the following way. The numbers of
127collisions ($n_i$, $i=1,2$ for excitation and $3$ for ionisation)
128follow the Poisson distribution with a mean value $\langle n_i \rangle$.
129In a step of length $\Delta x$ the mean number of collisions is given by
130   \begin{equation}
131        \langle n_i \rangle = \Delta x \ \Sigma_i
132   \end{equation}
133The mean energy loss in a step is the sum of the excitation and ionisation
134contributions and can be written as
135   \begin{equation}
136     \frac{dE}{dx} \cdotp \Delta x =
137     \left \{ \Sigma_1 E_1 + \Sigma_2 E_2 +
138        \int_{E_0}^{T_{up}} E g(E) dE \right \} \Delta x .
139   \end{equation}
140From this, using Eq. \ref{fluct.eqn1} - \ref{fluct.eqn4}, one can see that
141   \begin{equation}
142         C = dE/dx .
143   \end{equation}
144
145\noindent
146The other parameters in the fluctuation model have been chosen
147in the following way. $Z \cdotp f_1$ and $Z \cdotp f_2$ represent in
148the model the number of loosely/tightly bound electrons
149   \begin{equation}
150         f_2 = 0 \hspace {15 pt} for \hspace {15 pt} Z = 1
151   \end{equation}
152   \begin{equation}
153         f_2 = 2/Z \hspace {15 pt} for \hspace {15 pt} Z \geq 2
154   \end{equation}
155   \begin{equation}
156         E_2 = 10 \mbox{ eV } Z^2
157   \end{equation}
158   \begin{equation}
159         E_0 = 10 \mbox{ eV } .
160   \end{equation}
161Using these parameter values, $E_2$ corresponds approximately to the
162K-shell energy of the atoms ( and $Z f_2 = 2 $ is the number of K-shell
163electrons).
164The parameters $f_1$ and $E_1$ can be obtained from Eqs.~ \ref{fluct.eqn3}
165and \ref{fluct.eqn4}.
166\noindent
167The parameter $r$ is the only variable in the model which can be tuned.
168This parameter determines the relative contribution of ionisation and
169excitation to the energy loss. Based on comparisons of simulated energy
170loss distributions to experimental data, its value has been parametrized
171 as
172   \begin{equation}
173      r = 0.03 + 0.23 \cdotp ln(ln(\frac{T_{up}}{I}))
174   \end{equation}
175
176\paragraph{Sampling the energy loss.}
177The energy loss is computed in the model under the assumption that
178the step length (or relative energy loss) is small and, in consequence, the
179cross section can be  considered constant along the step.  The loss due to
180the excitation is
181   \begin{equation}
182         \Delta E_{exc} = n_1 E_1 + n_2 E_2
183   \end{equation}
184where $n_1$ and $n_2$ are sampled from a Poisson distribution. The energy
185loss due to ionisation can be generated from the distribution $g(E)$
186by the inverse transformation method :
187   \begin{equation}
188      u = F(E) = \int_{E_0}^E g(x) dx
189   \end{equation}
190   \begin{equation}
191      E = F^{-1}(u) = \frac {E_0}{1-u \frac{T_{up}-E_0}{T_{up}}}
192   \end{equation}
193where $u$ is a uniformly distributed random number $\in [0,\ 1]$.
194The contribution coming from the ionisation will then be
195   \begin{equation}
196     \Delta E_{ion} = \sum_{j = 1}^{n3} \frac {E_0}
197                      {1-u_j \frac{T_{up}-E_0}{T_{up}}}
198   \end{equation}
199where $n_3$ is the number of ionisations sampled from the Poisson
200distribution. The total energy loss in a step will be
201$ \Delta E = \Delta E_{exc} + \Delta E_{ion}$ and the energy loss
202fluctuation comes from fluctuations in the number of collisions $n_i$
203 and from the sampling of the ionisation loss.
204
205\paragraph{Thick layers}
206If the mean energy loss and step are in the range of validity of the
207Gaussian approximation of the fluctuation, the much faster Gaussian
208sampling is used to compute the actual energy loss.
209
210\paragraph{Conclusions}
211This simple model of energy loss fluctuations is rather fast and can
212be used for any thickness of material.  This has been verified by performing
213many simulations and comparing the results with experimental data, such
214as those in Ref.\cite{straggling.lassila}. \\
215As the limit of validity of Landau's theory is approached, the loss
216distribution approaches the Landau form smoothly.
217
218\subsection{Status of this document}
219 30.01.02  created by L. Urb\'an\\
220 28.08.02  updated by V.Ivanchenko\\
221 17.08.04  moved to common to all charged particles (mma) \\
222 04.12.04  spelling and grammar check by D.H. Wright \\
223 04.05.05  updated by L. Urb\'an\\ 
224 09.12.05  updated by V.Ivanchenko\\
225 29.03.07  updated by L. Urb\'an\\
226 11.12.08  updated by V.Ivanchenko\\
227 
228\begin{latexonly}
229
230\begin{thebibliography}{99}
231\bibitem{straggling.bichsel} H.~Bichsel
232   {\em Rev.Mod.Phys. 60 (1988) 663}
233\bibitem{straggling.lassila} K.~Lassila-Perini, L.Urb\'an
234   {\em Nucl.Inst.Meth. A362(1995) 416}
235\bibitem{eloss.geant3} {\sc geant3} manual
236  {\em Cern Program Library Long Writeup W5013 (1994)}   
237\bibitem{eloss.ICRU49}ICRU (A.~Allisy et al),
238Stopping Powers and Ranges for Protons and Alpha
239Particles, {\em ICRU Report 49 (1993)}.
240\end{thebibliography}
241
242\end{latexonly}
243
244\begin{htmlonly}
245
246\subsection{Bibliography}
247
248\begin{enumerate}
249\item H.~Bichsel {\em Rev.Mod.Phys. 60 (1988) 663}
250\item K.~Lassila-Perini, L.Urb\'an
251   {\em Nucl.Inst.Meth. A362(1995) 416}
252\item {\sc geant3} manual
253  {\em Cern Program Library Long Writeup W5013 (1994)}
254\item ICRU (A.~Allisy et al),
255Stopping Powers and Ranges for Protons and Alpha
256Particles, {\em ICRU Report 49 (1993)}.
257\end{enumerate}
258
259\end{htmlonly}
Note: See TracBrowser for help on using the repository browser.