source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/electromagnetic/xrays/cerenkov.tex @ 1345

Last change on this file since 1345 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 4.0 KB
Line 
1% GEANT4 Physics Reference Manual - Cerenkov Process
2% in LaTex 2e - adopted from GEANT3 manual by P. Gumplinger
3
4%\documentclass[11pt,twoside,a4page]{article}
5%\usepackage{epsfig}
6
7%\setlength{\parindent}{0pt}
8
9%\begin{document}
10
11%\title{\v{C}erenkov Process}
12%\author{P.~Gumplinger}
13%\date{December 7, 1998}
14%\maketitle
15
16
17\section{\v{C}erenkov Effect}
18
19The radiation of \v{C}erenkov light occurs when a charged particle moves
20through a dispersive medium faster than the speed of light in that medium.
21A dispersive medium is one whose index of refraction is an increasing function
22of photon energy.  Two things happen when such a particle slows down:
23\begin{enumerate} 
24\item a cone of \v{C}erenkov photons is emitted, with the cone angle (measured
25with respect to the particle momentum) decreasing as the particle loses
26energy;
27
28\item the momentum of the photons produced increases, while the number of
29photons produced decreases.
30\end{enumerate} 
31When the particle velocity drops below the local speed of light, photons are
32no longer emitted.  At that point, the \v{C}erenkov cone collapses to zero.
33\\
34
35\noindent
36In order to simulate \v{C}erenkov radiation the number of photons per track
37length must be calculated.  The formulae used for this calculation can be
38found below and in \cite{Jackson98, pdg}.  Let $n$ be the refractive index of
39the dielectric material acting as a radiator.  Here $n=c/c'$ where $c'$ is the
40group velocity of light in the material, hence $1 \leq n$.  In a dispersive
41material $n$ is an increasing function of the photon energy $\epsilon$ 
42($dn/d\epsilon \geq 0$).  A particle traveling with speed $\beta = v/c$ will
43emit photons at an angle $\theta$ with respect to its direction, where
44$\theta$ is given by
45\begin{displaymath}
46\cos \theta = \frac{1}{\beta n} .
47\end{displaymath}
48From this follows the limitation for the momentum of the emitted
49photons:
50\begin{displaymath}
51n(\epsilon_{min}) = \frac{1}{\beta} .
52\end{displaymath}
53Photons emitted with an energy beyond a certain value are immediately
54re-absorbed by the material;  this is the window of transparency of the
55radiator.  As a consequence, all photons are contained in a cone of
56opening angle $\cos \theta_{max} = 1/(\beta n(\epsilon_{max}))$. \\ 
57
58\noindent
59The average number of photons produced is given by the relations :
60\begin{eqnarray*}
61dN &=& \frac{\alpha z^{2}}{\hbar c}\sin^{2}\theta d\epsilon dx =
62\frac{\alpha z^{2}}{\hbar c}(1 - \frac{1}{n^{2}\beta^2}) d\epsilon dx
63\\
64 & \approx & 370z^{2}
65\frac{photons}{eV\,cm}(1 - \frac{1}{n^{2}\beta^{2}})d\epsilon dx
66\end{eqnarray*}
67and the number of photons generated per track length is
68\begin{displaymath}
69\frac{dN}{dx} \approx 370z^{2} \int_{\epsilon_{min}}^{\epsilon_{max}}
70d\epsilon \left(1 - \frac{1}{n^{2}\beta^2} \right)
71= 370z^{2} \left \lbrack \epsilon_{max}
72- \epsilon_{min} - \frac{1}{\beta^{2}}
73\int_{\epsilon_{min}}^{\epsilon_{max}} \frac{d\epsilon}
74{n^2 (\epsilon)}\right \rbrack 
75\end{displaymath} . \\
76
77\noindent
78The number of photons produced is calculated from a Poisson distribution with
79a mean of $\langle n \rangle = \mbox{StepLength}\ dN/dx$.  The energy
80distribution of the photon is then sampled from the density function
81\begin{displaymath}
82f(\epsilon)=\left \lbrack 1 - \frac{1}{n^{2}(\epsilon)\beta^{2}} \right \rbrack
83\end{displaymath} .
84
85\subsection{Status of this document}
8607.12.98 created by P.Gumplinger \\
8711.12.01 SI units (mma) \\
8808.05.02 re-written by D.H. Wright \\
89
90\begin{latexonly}
91
92\begin{thebibliography}{99}
93\bibitem{Jackson98}
94J.D.Jackson, Classical Electrodynamics, John Wiley and Sons (1998)
95
96\bibitem{pdg}
97  D.E. Groom et al.
98  Particle Data Group . Rev. of Particle Properties.
99  Eur. Phys. J. C15,1 (2000) http://pdg.lbl.gov/       
100\end{thebibliography}
101
102\end{latexonly}
103
104\begin{htmlonly}
105
106\subsection{Bibliography}
107
108\begin{enumerate}
109\item J.D.Jackson, Classical Electrodynamics, John Wiley and Sons (1998)
110
111\item D.E. Groom et al.
112  Particle Data Group . Rev. of Particle Properties.
113  Eur. Phys. J. C15,1 (2000) http://pdg.lbl.gov/       
114\end{enumerate}
115
116\end{htmlonly}
117
118
119
120
121
122
123
124
125
126
Note: See TracBrowser for help on using the repository browser.