source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/electromagnetic/xrays/xtr.tex

Last change on this file was 1211, checked in by garnier, 15 years ago

CVS update

File size: 16.1 KB
Line 
1\section[Transition radiation]{Transition radiation}
2
3\subsection[Relationship of Transition Rad to Cherenkov Rad]{The Relationship of Transition Radiation to X-ray Cherenkov Radiation}
4X-ray transition radiation (XTR ) occurs when a relativistic charged
5particle passes from one medium to another of a different dielectric
6permittivity.  In order to describe this process it is useful to begin
7with an explanation of X-ray Cherenkov radiation, which is closely related.
8
9The mean number of X-ray Cherenkov radiation (XCR) photons of frequency
10$\omega$ emitted into an angle $\theta$ per unit distance along a particle
11trajectory is ~\cite{griCR}
12%
13\begin{equation}
14\label{Nxcr}
15\frac{d^3 \bar{N}_{xcr}}{\hbar d\omega\,dx\,d\theta^2}=
16\frac{\alpha}{\pi\hbar c}\frac{\omega}{c}\theta^2
17\textrm{Im}\left\{Z\right\}.
18\end{equation}
19%
20Here the quantity $Z$ is introduced as the {\em complex formation zone} of
21XCR in the medium:
22%
23\begin{equation}
24\label{Zj}
25Z=\frac{L}{1-i\displaystyle\frac{L}{l}},\quad L=\frac{c}{\omega}
26\left[\gamma^{-2}+\displaystyle\frac{\omega^2_p}{\omega^2}+\theta^2\right]^{-1},
27\quad \gamma^{-2}=1-\beta^2.
28\end{equation}
29%
30with $l$ and $\omega_p$ the photon absorption length and the plasma
31frequency, respectively, in the medium.  For the case of a transparent
32medium, $l \rightarrow \infty$ and the complex formation zone reduces to
33the {\em coherence length} $L$ of XCR.  The coherence length roughly
34corresponds to that part of the trajectory in which an XCR photon can be
35created.
36
37Introducing a complex quantity $Z$ with its imaginary part proportional to
38the absorption cross-section ($\sim l^{-1}$) is required in order to account
39for absorption in the medium.  Usually,
40$\omega_p^2/\omega^2 \gg c/\omega l$.  Then it can be seen from Eqs.
41\ref{Nxcr} and \ref{Zj} that the number of emitted XCR photons is
42considerably suppressed and disappears in the limit of a transparent
43medium.  This is caused by the destructive interference between the photons
44emitted from different parts of the particle trajectory.
45
46The destructive interference of X-ray Cherenkov radiation is removed if
47the particle crosses a boundary between two media with different
48dielectric permittivities, $\epsilon$, where
49%
50\begin{equation}
51\label{eps}
52\epsilon=1-\frac{\omega^2_p}{\omega^2}+
53i\frac{c}{\omega l}.
54\end{equation}
55%
56Here the standard high-frequency approximation for the dielectric
57permittivity has been used.  This is valid for energy transfers larger than
58the $K$-shell excitation potential.
59
60If layers of media are alternated with spacings of order $L$, the X-ray
61radiation yield from a trajectory of unit length can be increased by roughly
62$l/L$ times.  The radiation produced in this case is called X-ray transition
63radiation (XTR).
64
65\subsection{Calculating the X-ray Transition Radiation Yield}
66
67Using the methods developed in Ref. \cite{gri01} one can derive the relation
68describing the mean number of XTR photons generated per unit photon
69frequency and $\theta^2$ {\em inside} the radiator for a general XTR
70radiator consisting of $n$ different absorbing media with fluctuating
71thicknesses:
72%
73\begin{eqnarray}
74%\begin{equation}
75\label{Nin}
76&&\frac{d^2 \bar{N}_{in}}{\hbar d\omega\,d\theta^2}=
77\frac{\alpha}{\pi\hbar c^2}\omega\theta^2
78\textrm{Re}\left\{\sum_{i=1}^{n-1}(Z_{i}-Z_{i+1})^2+
79\right. \\ 
80&+&\left.
812\sum_{k=1}^{n-1}\,\sum_{i=1}^{k-1}(Z_{i}-Z_{i+1})\left[\prod_{j=i+1}^{k}F_{j}\right](Z_{k}-Z_{k+1})
82\right\},\,F_j=\exp\left[-\frac{t_j}{2Z_j}\right]. \nonumber
83%\end{equation}
84\end{eqnarray}
85%
86In the case of gamma distributed gap thicknesses (foam or fiber radiators) the values
87$F_j$, ($j=1,2$) can be estimated as:
88%
89\begin{equation}
90\label{Hj}
91F_j = \int_0^{\infty}dt_j\,
92\left(\frac{\nu_j}{\bar{t}_j}\right)^{\nu_j}
93\frac{t_j^{\nu_j - 1}}{\Gamma(\nu_j)}
94\exp\left[-\frac{\nu_j t_j}{\bar{t}_j}-\,i\frac{t_j}{2Z_j}\right]= \left[1 +
95\displaystyle i\frac{\bar{t}_j}{2Z_j\nu_j}\right]^{-\nu_j},
96\end{equation}
97%
98where $Z_j$ is the complex formation zone of XTR
99(similar to relation \ref{Zj} for XCR) in the $j$-th medium
100\cite{gri01,g4xtr}$\Gamma$ is the Euler gamma function, $\bar{t}_j$ is
101the mean thickness of the $j$-th medium in the radiator and $\nu_j > 0$ is
102the parameter roughly describing the relative fluctuations of $t_j$.  In
103fact, the relative fluctuation is $\delta t_j/\bar{t}_j\sim 1/\sqrt{\nu_j}$.
104
105In the particular case of $n$ foils of the first medium ($Z_1, F_1$)
106interspersed with gas gaps of the second medium ($Z_2, F_2$), one obtains:
107%
108\begin{equation}
109\label{Nn1}
110\frac{d^2 \bar{N}_{in}}{\hbar d\omega\,d\theta^2} =
111\frac{2\alpha}{\pi\hbar c^2}\omega\theta^2
112\textrm{Re}\left\{\langle R^{(n)}\rangle\right\},\quad F = F_1 F_2,
113\end{equation}
114%
115\begin{equation}
116\label{Rn}
117\langle R^{(n)}\rangle=(Z_1-Z_2)^2\left\{n\frac{(1-F_1)(1-F_2)}{1-F}+
118\frac{(1-F_1)^2F_2[1-F^n]}{(1-F)^2}\right\}.
119\end{equation} 
120%
121Here $\langle R^{(n)}\rangle$ is the stack factor reflecting the radiator geometry.
122The integration of (\ref{Nn1}) with respect to $\theta^2$ can be simplified for the
123case of a regular radiator ($\nu_{1,2}\rightarrow\infty$), transparent in terms
124of XTR generation media, and $n\gg 1$~\cite{gar71}. The frequency spectrum of
125emitted XTR photons is given by:
126%
127\begin{eqnarray}
128\label{Nntr}
129&&\frac{d \bar{N}_{in}}{\hbar d\omega}=
130\int_{0}^{\sim 10\gamma^{-2}}d\theta^2\frac{d^2 \bar{N}_{in}}{\hbar d\omega\,d\theta^2}=
131\frac{4\alpha n}{\pi\hbar\omega}(C_1+C_2)^2 \nonumber \\
132&&\cdot\sum_{k=k_{min}}^{k_{max}}
133\frac{(k-C_{min})}{(k-C_1)^2(k+C_2)^2}
134%\cdot \nonumber \\
135\sin^2\left[\frac{\pi t_1}{t_1+t_2}(k+C_2)\right],\nonumber \\
136\end{eqnarray}
137%
138%
139\[
140C_{1,2}=\frac{t_{1,2}(\omega^2_1-\omega^2_2)}{4\pi c\omega},\quad 
141C_{min}=\frac{1}{4\pi c}\left[\frac{\omega(t_1+t_2)}{\gamma^2}+
142\frac{t_1\omega^2_1+t_2\omega^2_2}{\omega}\right].
143\]
144The sum in (\ref{Nntr}) is defined by terms with $k\geq k_{min}$ corresponding
145to the region of $\theta\geq 0$. Therefore $k_{min}$ should be the nearest
146to $C_{min}$ integer $k_{min}\ge C_{min}$. The value of $k_{max}$ is defined by the
147maximum emission angle $\theta^2_{max}\sim 10\gamma^{-2}$. It can be evaluated as the
148integer part of
149\[
150C_{max}=C_{min}+\frac{\omega(t_1+t_2)}{4\pi c}\frac{10}{\gamma^2}, \quad 
151k_{max}-k_{min}\sim10^2\div 10^3\gg 1.
152\]
153Numerically, however, only a few tens of terms contribute substantially to the
154sum, that is, one can choose $k_{max}\sim k_{min}+20$. Equation (\ref{Nntr})
155corresponds to the spectrum of the total number of photons emitted inside a
156regular transparent radiator. Therefore the mean interaction length, $\lambda_{XTR}$,
157of the XTR process in this kind of radiator can be introduced as:
158\[
159\lambda_{XTR}=n(t_1+t_2)\left[\int_{\hbar\omega_{min}}^{\hbar\omega_{max}}
160\hbar d\omega\frac{d \bar{N}_{in}}{\hbar d\omega}\right]^{-1},
161\]
162where $\hbar\omega_{min}\sim 1$ keV, and $\hbar\omega_{max}\sim 100$ keV for the
163majority of high energy physics experiments. Its value is constant along
164the particle trajectory in the approximation of a transparent regular radiator.
165The spectrum of the total number of XTR photons {\em after} regular transparent
166radiator is defined by (\ref{Nntr}) with:
167\[
168n\rightarrow n_{eff}=\sum_{k=0}^{n-1}\exp[-k(\sigma_1t_1+\sigma_2t_2)]=
169\frac{1-\exp[-n(\sigma_1t_1+\sigma_2t_2)]}
170{1-\exp[-(\sigma_1t_1+\sigma_2t_2)]},
171\]
172where $\sigma_1$ and $\sigma_2$ are the photo-absorption cross-sections corresponding
173to the photon frequency $\omega$ in the first and the second medium, respectively.
174With this correction taken into account the XTR absorption in the
175radiator (\ref{Nntr}) corresponds to the results of \cite{fab75}. In the more
176general case of the flux of XTR photons {\em after} a radiator, the XTR absorption
177can be taken into account with a calculation based on the stack factor derived
178in \cite{gar74}:
179%
180\begin{eqnarray}
181\label{Rflux}
182\langle R^{(n)}_{flux}\rangle&=& (L_1-L_2)^2\left\{
183\frac{1-Q^n}{1-Q}\frac{(1 + Q_1)(1 + F) - 2F_1 - 2 Q_1 F_2}{2(1-F)}\right.\nonumber \\
184&+&\left.\frac{(1 - F_1 )(Q_1 - F_1)F_2 (Q^n -F^n)}{(1 - F)(Q - F)}
185\right\},
186\end{eqnarray}
187%
188%
189\[
190Q = Q_1\cdot Q_2, \quad Q_j=\exp\left[-t_j/l_j\right]=\exp\left[-\sigma_j t_j\right],\quad j=1,2.
191\]
192Both XTR energy loss (\ref{Rn}) and flux (\ref{Rflux}) models can be implemented
193as a discrete electromagnetic process (see below).
194
195
196\subsection{Simulating X-ray Transition Radiation Production}
197
198A typical XTR radiator consits of many ($\sim 100$) boundaries between different
199materials.  To improve the tracking performance in such a volume one can introduce
200an artificial material \cite{g4xtr}, which is the geometrical mixture of foil and
201gas contents.  Here is an example:
202\begin{verbatim}
203  // In DetectorConstruction of an application
204  // Preparation of mixed radiator material
205  foilGasRatio  = fRadThickness/(fRadThickness+fGasGap);
206  foilDensity  = 1.39*g/cm3;     // Mylar     
207  gasDensity   = 1.2928*mg/cm3 ; // Air 
208  totDensity   = foilDensity*foilGasRatio +
209                 gasDensity*(1.0-foilGasRatio);
210  fractionFoil =  foilDensity*foilGasRatio/totDensity;
211  fractionGas  =  gasDensity*(1.0-foilGasRatio)/totDensity;     
212  G4Material* radiatorMat = new G4Material("radiatorMat",
213                                            totDensity,
214                                            ncomponents = 2 );
215  radiatorMat->AddMaterial( Mylar, fractionFoil );
216  radiatorMat->AddMaterial( Air,   fractionGas  );
217  G4cout << *(G4Material::GetMaterialTable()) << G4endl; 
218  // materials of the TR radiator
219  fRadiatorMat = radiatorMat;   // artificial for geometry 
220  fFoilMat     = Mylar; 
221  fGasMat      = Air; 
222\end{verbatim}
223
224This artificial material will be assigned to the logical volume in which
225XTR will be generated:
226
227\begin{verbatim}
228  solidRadiator = new G4Box("Radiator",
229                             1.1*AbsorberRadius ,
230                             1.1*AbsorberRadius,
231                             0.5*radThick        );                         
232  logicRadiator = new G4LogicalVolume( solidRadiator,   
233                                       fRadiatorMat,  // !!!     
234                                      "Radiator");                                               
235  physiRadiator = new G4PVPlacement(0,
236                                     G4ThreeVector(0,0,zRad),           
237                                     "Radiator", logicRadiator,         
238                                     physiWorld, false, 0       );     
239\end{verbatim}
240
241XTR photons generated by a relativistic charged particle intersecting a
242radiator with $2n$ interfaces between different media can be simulated by
243using the following algorithm.  First the total number of XTR photons is
244estimated using a Poisson distribution about the mean number of photons
245given by the following expression:
246%
247%\begin{equation}
248%\label{Nn2}
249\[
250\bar{N}^{(n)}=\int_{\omega_1}^{\omega_2}d\omega
251\int_{0}^{\theta_{max}^2}d\theta^2
252\frac{d^2 \bar{N}^{(n)}}{d\omega\,d\theta^2}=
253%\nonumber\\&=&
254\frac{2\alpha}{\pi c^2}\int_{\omega_1}^{\omega_2}\omega d\omega
255\int_{0}^{\theta_{max}^2}\theta^2 d\theta^2 
256\textrm{Re}\left\{\langle R^{(n)}\rangle\right\}.
257\]
258%\end{equation}
259%
260Here $\theta_{max}^2\sim 10\gamma^{-2}$, $\hbar\omega_1\sim 1$~keV,
261$\hbar\omega_2\sim 100$~keV, and $\langle R^{(n)}\rangle$ correspond to the
262geometry of the experiment.  For events in which the number of XTR
263photons is not equal to zero, the energy and angle of each XTR quantum
264is sampled from the integral distributions obtained by the numerical
265integration of expression (\ref{Nn1}).  For example, the integral
266energy spectrum of emitted XTR photons, $\bar{N}^{(n)}_{>\omega}$, is defined
267from the following integral distribution:
268%
269%\begin{equation}
270%\label{Nomega}
271\[
272\bar{N}^{(n)}_{>\omega}=\frac{2\alpha}{\pi c^2}
273\int_{\omega}^{\omega_2}\omega d\omega
274\int_{0}^{\theta_{max}^2}\theta^2 d\theta^2 
275\textrm{Re}\left\{\langle R^{(n)}\rangle\right\}.
276\]
277%\end{equation}
278%
279In { \sc Geant4} XTR generation {\em inside} or {\em after} radiators is
280described as a discrete electromagnetic process. It is convenient for the
281description of tracks in magnetic fields and can be used for the cases when
282the radiating charge experiences a scattering inside the radiator. The base
283class {\tt G4VXTRenergyLoss} is responsible for the creation of tables with
284integral energy and angular distributions of XTR photons.  It also contains
285the {\tt PostDoIt} function providing XTR photon generation and motion
286(if fExitFlux=true) through a XTR radiator to its boundary.  Particular models
287like {\tt G4RegularXTRadiator} implement the pure virtual function
288{\tt GetStackFactor}, which calculates the response of the XTR radiator
289reflecting its geometry. Included below are some comments for the declaration
290of XTR in a user application.
291
292In the physics list one should pass to the XTR process additional
293details of the XTR radiator involved:
294
295\begin{verbatim}
296// In PhysicsList of an application
297else if (particleName == "e-")  // Construct processes for electron with XTR
298{
299   pmanager->AddProcess(new G4MultipleScattering, -1, 1,1 );
300   pmanager->AddProcess(new G4eBremsstrahlung(),  -1,-1,1 );
301   pmanager->AddProcess(new Em10StepCut(),        -1,-1,1 );
302// in regular radiators:             
303   pmanager->AddDiscreteProcess(               
304   new G4RegularXTRadiator        // XTR dEdx in general regular radiator
305// new G4XTRRegularRadModel        - XTR flux after general regular radiator
306// new G4TransparentRegXTRadiator  - XTR dEdx in transparent
307//                                   regular radiator
308// new G4XTRTransparentRegRadModel - XTR flux after transparent
309//                                   regular radiator
310                         (pDet->GetLogicalRadiator(), // XTR radiator
311
312                          pDet->GetFoilMaterial(), // real foil
313                          pDet->GetGasMaterial(),  // real gas
314                          pDet->GetFoilThick(),    // real geometry
315                          pDet->GetGasThick(),
316                          pDet->GetFoilNumber(),   
317                          "RegularXTRadiator"));
318// or for foam/fiber radiators:
319   pmanager->AddDiscreteProcess(               
320   new G4GammaXTRadiator    - XTR dEdx in general foam/fiber radiator
321// new G4XTRGammaRadModel   - XTR flux after general foam/fiber radiator
322                          ( pDet->GetLogicalRadiator(),
323                            1000.,
324                            100.,
325                            pDet->GetFoilMaterial(),
326                            pDet->GetGasMaterial(),
327                            pDet->GetFoilThick(),
328                            pDet->GetGasThick(),
329                            pDet->GetFoilNumber(),
330                            "GammaXTRadiator"));
331} 
332\end{verbatim}
333Here for the foam/fiber radiators the values 1000 and 100 are the $\nu$ parameters
334(which can be varied) of the Gamma distribution for the foil and gas gaps,
335respectively. Classes G4TransparentRegXTRadiator and G4XTRTransparentRegRadModel
336correspond (\ref{Nntr}) to $n$ and $n_{eff}$, respectively.
337 
338\subsection{Status of this document}
33918.11.05 modified by V.Grichine \\
34029.11.02 re-written by D.H. Wright \\
34129.05.02 created by V.Grichine \\
342
343\begin{latexonly}
344
345\begin{thebibliography}{99}
346
347\bibitem{griCR}  V.M. Grichine,
348{\em Nucl. Instr. and Meth.}, {\bf A482} (2002) 629.
349
350\bibitem{gri01} V.M. Grichine, {\em Physics Letters}, {\bf B525} (2002) 225-239
351
352\bibitem{gar71} G.M. Garibyan,
353{\em Sov. Phys. JETP} {\bf 32} (1971) 23.
354
355\bibitem{fab75} C.W. Fabian and W. Struczinski
356{\em Physics Letters}, {\bf B57 } (1975) 483.
357
358\bibitem{gar74} G.M. Garibian, L.A. Gevorgian, and C. Yang,
359{\em Sov. Phys.- JETP, 39 (1975) 265.}
360
361\bibitem{g4xtr} J. Apostolakis, S. Giani, V. Grichine et al.,
362{\em Comput. Phys. Commun.} {\bf 132} (2000) 241.
363
364\end{thebibliography}
365
366\end{latexonly}
367
368\begin{htmlonly}
369
370\subsection{Bibliography}
371
372\begin{enumerate}
373\item  V.M. Grichine,
374{\em Nucl. Instr. and Meth.}, {\bf A482} (2002) 629.
375
376\item V.M. Grichine, {\em Physics Letters}, {\bf B525} (2002) 225-239
377
378\item G.M. Garibyan,
379{\em Sov. Phys. JETP} {\bf 32} (1971) 23.
380
381\item C.W. Fabian and W. Struczinski
382{\em Physics Letters}, {\bf B57 } (1975) 483.
383
384\item G.M. Garibian, L.A. Gevorgian, and C. Yang,
385{\em Sov. Phys.- JETP, 39 (1975) 265.}
386
387\item J. Apostolakis, S. Giani, V. Grichine et al.,
388{\em Comput. Phys. Commun.} {\bf 132} (2000) 241.
389
390\end{enumerate}
391
392\end{htmlonly}
393
394
Note: See TracBrowser for help on using the repository browser.