| 1 | \section[Transition radiation]{Transition radiation}
|
|---|
| 2 |
|
|---|
| 3 | \subsection[Relationship of Transition Rad to Cherenkov Rad]{The Relationship of Transition Radiation to X-ray Cherenkov Radiation}
|
|---|
| 4 | X-ray transition radiation (XTR ) occurs when a relativistic charged
|
|---|
| 5 | particle passes from one medium to another of a different dielectric
|
|---|
| 6 | permittivity. In order to describe this process it is useful to begin
|
|---|
| 7 | with an explanation of X-ray Cherenkov radiation, which is closely related.
|
|---|
| 8 |
|
|---|
| 9 | The mean number of X-ray Cherenkov radiation (XCR) photons of frequency
|
|---|
| 10 | $\omega$ emitted into an angle $\theta$ per unit distance along a particle
|
|---|
| 11 | trajectory is ~\cite{griCR}
|
|---|
| 12 | %
|
|---|
| 13 | \begin{equation}
|
|---|
| 14 | \label{Nxcr}
|
|---|
| 15 | \frac{d^3 \bar{N}_{xcr}}{\hbar d\omega\,dx\,d\theta^2}=
|
|---|
| 16 | \frac{\alpha}{\pi\hbar c}\frac{\omega}{c}\theta^2
|
|---|
| 17 | \textrm{Im}\left\{Z\right\}.
|
|---|
| 18 | \end{equation}
|
|---|
| 19 | %
|
|---|
| 20 | Here the quantity $Z$ is introduced as the {\em complex formation zone} of
|
|---|
| 21 | XCR in the medium:
|
|---|
| 22 | %
|
|---|
| 23 | \begin{equation}
|
|---|
| 24 | \label{Zj}
|
|---|
| 25 | Z=\frac{L}{1-i\displaystyle\frac{L}{l}},\quad L=\frac{c}{\omega}
|
|---|
| 26 | \left[\gamma^{-2}+\displaystyle\frac{\omega^2_p}{\omega^2}+\theta^2\right]^{-1},
|
|---|
| 27 | \quad \gamma^{-2}=1-\beta^2.
|
|---|
| 28 | \end{equation}
|
|---|
| 29 | %
|
|---|
| 30 | with $l$ and $\omega_p$ the photon absorption length and the plasma
|
|---|
| 31 | frequency, respectively, in the medium. For the case of a transparent
|
|---|
| 32 | medium, $l \rightarrow \infty$ and the complex formation zone reduces to
|
|---|
| 33 | the {\em coherence length} $L$ of XCR. The coherence length roughly
|
|---|
| 34 | corresponds to that part of the trajectory in which an XCR photon can be
|
|---|
| 35 | created.
|
|---|
| 36 |
|
|---|
| 37 | Introducing a complex quantity $Z$ with its imaginary part proportional to
|
|---|
| 38 | the absorption cross-section ($\sim l^{-1}$) is required in order to account
|
|---|
| 39 | for absorption in the medium. Usually,
|
|---|
| 40 | $\omega_p^2/\omega^2 \gg c/\omega l$. Then it can be seen from Eqs.
|
|---|
| 41 | \ref{Nxcr} and \ref{Zj} that the number of emitted XCR photons is
|
|---|
| 42 | considerably suppressed and disappears in the limit of a transparent
|
|---|
| 43 | medium. This is caused by the destructive interference between the photons
|
|---|
| 44 | emitted from different parts of the particle trajectory.
|
|---|
| 45 |
|
|---|
| 46 | The destructive interference of X-ray Cherenkov radiation is removed if
|
|---|
| 47 | the particle crosses a boundary between two media with different
|
|---|
| 48 | dielectric permittivities, $\epsilon$, where
|
|---|
| 49 | %
|
|---|
| 50 | \begin{equation}
|
|---|
| 51 | \label{eps}
|
|---|
| 52 | \epsilon=1-\frac{\omega^2_p}{\omega^2}+
|
|---|
| 53 | i\frac{c}{\omega l}.
|
|---|
| 54 | \end{equation}
|
|---|
| 55 | %
|
|---|
| 56 | Here the standard high-frequency approximation for the dielectric
|
|---|
| 57 | permittivity has been used. This is valid for energy transfers larger than
|
|---|
| 58 | the $K$-shell excitation potential.
|
|---|
| 59 |
|
|---|
| 60 | If layers of media are alternated with spacings of order $L$, the X-ray
|
|---|
| 61 | radiation yield from a trajectory of unit length can be increased by roughly
|
|---|
| 62 | $l/L$ times. The radiation produced in this case is called X-ray transition
|
|---|
| 63 | radiation (XTR).
|
|---|
| 64 |
|
|---|
| 65 | \subsection{Calculating the X-ray Transition Radiation Yield}
|
|---|
| 66 |
|
|---|
| 67 | Using the methods developed in Ref. \cite{gri01} one can derive the relation
|
|---|
| 68 | describing the mean number of XTR photons generated per unit photon
|
|---|
| 69 | frequency and $\theta^2$ {\em inside} the radiator for a general XTR
|
|---|
| 70 | radiator consisting of $n$ different absorbing media with fluctuating
|
|---|
| 71 | thicknesses:
|
|---|
| 72 | %
|
|---|
| 73 | \begin{eqnarray}
|
|---|
| 74 | %\begin{equation}
|
|---|
| 75 | \label{Nin}
|
|---|
| 76 | &&\frac{d^2 \bar{N}_{in}}{\hbar d\omega\,d\theta^2}=
|
|---|
| 77 | \frac{\alpha}{\pi\hbar c^2}\omega\theta^2
|
|---|
| 78 | \textrm{Re}\left\{\sum_{i=1}^{n-1}(Z_{i}-Z_{i+1})^2+
|
|---|
| 79 | \right. \\
|
|---|
| 80 | &+&\left.
|
|---|
| 81 | 2\sum_{k=1}^{n-1}\,\sum_{i=1}^{k-1}(Z_{i}-Z_{i+1})\left[\prod_{j=i+1}^{k}F_{j}\right](Z_{k}-Z_{k+1})
|
|---|
| 82 | \right\},\,F_j=\exp\left[-\frac{t_j}{2Z_j}\right]. \nonumber
|
|---|
| 83 | %\end{equation}
|
|---|
| 84 | \end{eqnarray}
|
|---|
| 85 | %
|
|---|
| 86 | In the case of gamma distributed gap thicknesses (foam or fiber radiators) the values
|
|---|
| 87 | $F_j$, ($j=1,2$) can be estimated as:
|
|---|
| 88 | %
|
|---|
| 89 | \begin{equation}
|
|---|
| 90 | \label{Hj}
|
|---|
| 91 | F_j = \int_0^{\infty}dt_j\,
|
|---|
| 92 | \left(\frac{\nu_j}{\bar{t}_j}\right)^{\nu_j}
|
|---|
| 93 | \frac{t_j^{\nu_j - 1}}{\Gamma(\nu_j)}
|
|---|
| 94 | \exp\left[-\frac{\nu_j t_j}{\bar{t}_j}-\,i\frac{t_j}{2Z_j}\right]= \left[1 +
|
|---|
| 95 | \displaystyle i\frac{\bar{t}_j}{2Z_j\nu_j}\right]^{-\nu_j},
|
|---|
| 96 | \end{equation}
|
|---|
| 97 | %
|
|---|
| 98 | where $Z_j$ is the complex formation zone of XTR
|
|---|
| 99 | (similar to relation \ref{Zj} for XCR) in the $j$-th medium
|
|---|
| 100 | \cite{gri01,g4xtr}. $\Gamma$ is the Euler gamma function, $\bar{t}_j$ is
|
|---|
| 101 | the mean thickness of the $j$-th medium in the radiator and $\nu_j > 0$ is
|
|---|
| 102 | the parameter roughly describing the relative fluctuations of $t_j$. In
|
|---|
| 103 | fact, the relative fluctuation is $\delta t_j/\bar{t}_j\sim 1/\sqrt{\nu_j}$.
|
|---|
| 104 |
|
|---|
| 105 | In the particular case of $n$ foils of the first medium ($Z_1, F_1$)
|
|---|
| 106 | interspersed with gas gaps of the second medium ($Z_2, F_2$), one obtains:
|
|---|
| 107 | %
|
|---|
| 108 | \begin{equation}
|
|---|
| 109 | \label{Nn1}
|
|---|
| 110 | \frac{d^2 \bar{N}_{in}}{\hbar d\omega\,d\theta^2} =
|
|---|
| 111 | \frac{2\alpha}{\pi\hbar c^2}\omega\theta^2
|
|---|
| 112 | \textrm{Re}\left\{\langle R^{(n)}\rangle\right\},\quad F = F_1 F_2,
|
|---|
| 113 | \end{equation}
|
|---|
| 114 | %
|
|---|
| 115 | \begin{equation}
|
|---|
| 116 | \label{Rn}
|
|---|
| 117 | \langle R^{(n)}\rangle=(Z_1-Z_2)^2\left\{n\frac{(1-F_1)(1-F_2)}{1-F}+
|
|---|
| 118 | \frac{(1-F_1)^2F_2[1-F^n]}{(1-F)^2}\right\}.
|
|---|
| 119 | \end{equation}
|
|---|
| 120 | %
|
|---|
| 121 | Here $\langle R^{(n)}\rangle$ is the stack factor reflecting the radiator geometry.
|
|---|
| 122 | The integration of (\ref{Nn1}) with respect to $\theta^2$ can be simplified for the
|
|---|
| 123 | case of a regular radiator ($\nu_{1,2}\rightarrow\infty$), transparent in terms
|
|---|
| 124 | of XTR generation media, and $n\gg 1$~\cite{gar71}. The frequency spectrum of
|
|---|
| 125 | emitted XTR photons is given by:
|
|---|
| 126 | %
|
|---|
| 127 | \begin{eqnarray}
|
|---|
| 128 | \label{Nntr}
|
|---|
| 129 | &&\frac{d \bar{N}_{in}}{\hbar d\omega}=
|
|---|
| 130 | \int_{0}^{\sim 10\gamma^{-2}}d\theta^2\frac{d^2 \bar{N}_{in}}{\hbar d\omega\,d\theta^2}=
|
|---|
| 131 | \frac{4\alpha n}{\pi\hbar\omega}(C_1+C_2)^2 \nonumber \\
|
|---|
| 132 | &&\cdot\sum_{k=k_{min}}^{k_{max}}
|
|---|
| 133 | \frac{(k-C_{min})}{(k-C_1)^2(k+C_2)^2}
|
|---|
| 134 | %\cdot \nonumber \\
|
|---|
| 135 | \sin^2\left[\frac{\pi t_1}{t_1+t_2}(k+C_2)\right],\nonumber \\
|
|---|
| 136 | \end{eqnarray}
|
|---|
| 137 | %
|
|---|
| 138 | %
|
|---|
| 139 | \[
|
|---|
| 140 | C_{1,2}=\frac{t_{1,2}(\omega^2_1-\omega^2_2)}{4\pi c\omega},\quad
|
|---|
| 141 | C_{min}=\frac{1}{4\pi c}\left[\frac{\omega(t_1+t_2)}{\gamma^2}+
|
|---|
| 142 | \frac{t_1\omega^2_1+t_2\omega^2_2}{\omega}\right].
|
|---|
| 143 | \]
|
|---|
| 144 | The sum in (\ref{Nntr}) is defined by terms with $k\geq k_{min}$ corresponding
|
|---|
| 145 | to the region of $\theta\geq 0$. Therefore $k_{min}$ should be the nearest
|
|---|
| 146 | to $C_{min}$ integer $k_{min}\ge C_{min}$. The value of $k_{max}$ is defined by the
|
|---|
| 147 | maximum emission angle $\theta^2_{max}\sim 10\gamma^{-2}$. It can be evaluated as the
|
|---|
| 148 | integer part of
|
|---|
| 149 | \[
|
|---|
| 150 | C_{max}=C_{min}+\frac{\omega(t_1+t_2)}{4\pi c}\frac{10}{\gamma^2}, \quad
|
|---|
| 151 | k_{max}-k_{min}\sim10^2\div 10^3\gg 1.
|
|---|
| 152 | \]
|
|---|
| 153 | Numerically, however, only a few tens of terms contribute substantially to the
|
|---|
| 154 | sum, that is, one can choose $k_{max}\sim k_{min}+20$. Equation (\ref{Nntr})
|
|---|
| 155 | corresponds to the spectrum of the total number of photons emitted inside a
|
|---|
| 156 | regular transparent radiator. Therefore the mean interaction length, $\lambda_{XTR}$,
|
|---|
| 157 | of the XTR process in this kind of radiator can be introduced as:
|
|---|
| 158 | \[
|
|---|
| 159 | \lambda_{XTR}=n(t_1+t_2)\left[\int_{\hbar\omega_{min}}^{\hbar\omega_{max}}
|
|---|
| 160 | \hbar d\omega\frac{d \bar{N}_{in}}{\hbar d\omega}\right]^{-1},
|
|---|
| 161 | \]
|
|---|
| 162 | where $\hbar\omega_{min}\sim 1$ keV, and $\hbar\omega_{max}\sim 100$ keV for the
|
|---|
| 163 | majority of high energy physics experiments. Its value is constant along
|
|---|
| 164 | the particle trajectory in the approximation of a transparent regular radiator.
|
|---|
| 165 | The spectrum of the total number of XTR photons {\em after} regular transparent
|
|---|
| 166 | radiator is defined by (\ref{Nntr}) with:
|
|---|
| 167 | \[
|
|---|
| 168 | n\rightarrow n_{eff}=\sum_{k=0}^{n-1}\exp[-k(\sigma_1t_1+\sigma_2t_2)]=
|
|---|
| 169 | \frac{1-\exp[-n(\sigma_1t_1+\sigma_2t_2)]}
|
|---|
| 170 | {1-\exp[-(\sigma_1t_1+\sigma_2t_2)]},
|
|---|
| 171 | \]
|
|---|
| 172 | where $\sigma_1$ and $\sigma_2$ are the photo-absorption cross-sections corresponding
|
|---|
| 173 | to the photon frequency $\omega$ in the first and the second medium, respectively.
|
|---|
| 174 | With this correction taken into account the XTR absorption in the
|
|---|
| 175 | radiator (\ref{Nntr}) corresponds to the results of \cite{fab75}. In the more
|
|---|
| 176 | general case of the flux of XTR photons {\em after} a radiator, the XTR absorption
|
|---|
| 177 | can be taken into account with a calculation based on the stack factor derived
|
|---|
| 178 | in \cite{gar74}:
|
|---|
| 179 | %
|
|---|
| 180 | \begin{eqnarray}
|
|---|
| 181 | \label{Rflux}
|
|---|
| 182 | \langle R^{(n)}_{flux}\rangle&=& (L_1-L_2)^2\left\{
|
|---|
| 183 | \frac{1-Q^n}{1-Q}\frac{(1 + Q_1)(1 + F) - 2F_1 - 2 Q_1 F_2}{2(1-F)}\right.\nonumber \\
|
|---|
| 184 | &+&\left.\frac{(1 - F_1 )(Q_1 - F_1)F_2 (Q^n -F^n)}{(1 - F)(Q - F)}
|
|---|
| 185 | \right\},
|
|---|
| 186 | \end{eqnarray}
|
|---|
| 187 | %
|
|---|
| 188 | %
|
|---|
| 189 | \[
|
|---|
| 190 | Q = Q_1\cdot Q_2, \quad Q_j=\exp\left[-t_j/l_j\right]=\exp\left[-\sigma_j t_j\right],\quad j=1,2.
|
|---|
| 191 | \]
|
|---|
| 192 | Both XTR energy loss (\ref{Rn}) and flux (\ref{Rflux}) models can be implemented
|
|---|
| 193 | as a discrete electromagnetic process (see below).
|
|---|
| 194 |
|
|---|
| 195 |
|
|---|
| 196 | \subsection{Simulating X-ray Transition Radiation Production}
|
|---|
| 197 |
|
|---|
| 198 | A typical XTR radiator consits of many ($\sim 100$) boundaries between different
|
|---|
| 199 | materials. To improve the tracking performance in such a volume one can introduce
|
|---|
| 200 | an artificial material \cite{g4xtr}, which is the geometrical mixture of foil and
|
|---|
| 201 | gas contents. Here is an example:
|
|---|
| 202 | \begin{verbatim}
|
|---|
| 203 | // In DetectorConstruction of an application
|
|---|
| 204 | // Preparation of mixed radiator material
|
|---|
| 205 | foilGasRatio = fRadThickness/(fRadThickness+fGasGap);
|
|---|
| 206 | foilDensity = 1.39*g/cm3; // Mylar
|
|---|
| 207 | gasDensity = 1.2928*mg/cm3 ; // Air
|
|---|
| 208 | totDensity = foilDensity*foilGasRatio +
|
|---|
| 209 | gasDensity*(1.0-foilGasRatio);
|
|---|
| 210 | fractionFoil = foilDensity*foilGasRatio/totDensity;
|
|---|
| 211 | fractionGas = gasDensity*(1.0-foilGasRatio)/totDensity;
|
|---|
| 212 | G4Material* radiatorMat = new G4Material("radiatorMat",
|
|---|
| 213 | totDensity,
|
|---|
| 214 | ncomponents = 2 );
|
|---|
| 215 | radiatorMat->AddMaterial( Mylar, fractionFoil );
|
|---|
| 216 | radiatorMat->AddMaterial( Air, fractionGas );
|
|---|
| 217 | G4cout << *(G4Material::GetMaterialTable()) << G4endl;
|
|---|
| 218 | // materials of the TR radiator
|
|---|
| 219 | fRadiatorMat = radiatorMat; // artificial for geometry
|
|---|
| 220 | fFoilMat = Mylar;
|
|---|
| 221 | fGasMat = Air;
|
|---|
| 222 | \end{verbatim}
|
|---|
| 223 |
|
|---|
| 224 | This artificial material will be assigned to the logical volume in which
|
|---|
| 225 | XTR will be generated:
|
|---|
| 226 |
|
|---|
| 227 | \begin{verbatim}
|
|---|
| 228 | solidRadiator = new G4Box("Radiator",
|
|---|
| 229 | 1.1*AbsorberRadius ,
|
|---|
| 230 | 1.1*AbsorberRadius,
|
|---|
| 231 | 0.5*radThick );
|
|---|
| 232 | logicRadiator = new G4LogicalVolume( solidRadiator,
|
|---|
| 233 | fRadiatorMat, // !!!
|
|---|
| 234 | "Radiator");
|
|---|
| 235 | physiRadiator = new G4PVPlacement(0,
|
|---|
| 236 | G4ThreeVector(0,0,zRad),
|
|---|
| 237 | "Radiator", logicRadiator,
|
|---|
| 238 | physiWorld, false, 0 );
|
|---|
| 239 | \end{verbatim}
|
|---|
| 240 |
|
|---|
| 241 | XTR photons generated by a relativistic charged particle intersecting a
|
|---|
| 242 | radiator with $2n$ interfaces between different media can be simulated by
|
|---|
| 243 | using the following algorithm. First the total number of XTR photons is
|
|---|
| 244 | estimated using a Poisson distribution about the mean number of photons
|
|---|
| 245 | given by the following expression:
|
|---|
| 246 | %
|
|---|
| 247 | %\begin{equation}
|
|---|
| 248 | %\label{Nn2}
|
|---|
| 249 | \[
|
|---|
| 250 | \bar{N}^{(n)}=\int_{\omega_1}^{\omega_2}d\omega
|
|---|
| 251 | \int_{0}^{\theta_{max}^2}d\theta^2
|
|---|
| 252 | \frac{d^2 \bar{N}^{(n)}}{d\omega\,d\theta^2}=
|
|---|
| 253 | %\nonumber\\&=&
|
|---|
| 254 | \frac{2\alpha}{\pi c^2}\int_{\omega_1}^{\omega_2}\omega d\omega
|
|---|
| 255 | \int_{0}^{\theta_{max}^2}\theta^2 d\theta^2
|
|---|
| 256 | \textrm{Re}\left\{\langle R^{(n)}\rangle\right\}.
|
|---|
| 257 | \]
|
|---|
| 258 | %\end{equation}
|
|---|
| 259 | %
|
|---|
| 260 | Here $\theta_{max}^2\sim 10\gamma^{-2}$, $\hbar\omega_1\sim 1$~keV,
|
|---|
| 261 | $\hbar\omega_2\sim 100$~keV, and $\langle R^{(n)}\rangle$ correspond to the
|
|---|
| 262 | geometry of the experiment. For events in which the number of XTR
|
|---|
| 263 | photons is not equal to zero, the energy and angle of each XTR quantum
|
|---|
| 264 | is sampled from the integral distributions obtained by the numerical
|
|---|
| 265 | integration of expression (\ref{Nn1}). For example, the integral
|
|---|
| 266 | energy spectrum of emitted XTR photons, $\bar{N}^{(n)}_{>\omega}$, is defined
|
|---|
| 267 | from the following integral distribution:
|
|---|
| 268 | %
|
|---|
| 269 | %\begin{equation}
|
|---|
| 270 | %\label{Nomega}
|
|---|
| 271 | \[
|
|---|
| 272 | \bar{N}^{(n)}_{>\omega}=\frac{2\alpha}{\pi c^2}
|
|---|
| 273 | \int_{\omega}^{\omega_2}\omega d\omega
|
|---|
| 274 | \int_{0}^{\theta_{max}^2}\theta^2 d\theta^2
|
|---|
| 275 | \textrm{Re}\left\{\langle R^{(n)}\rangle\right\}.
|
|---|
| 276 | \]
|
|---|
| 277 | %\end{equation}
|
|---|
| 278 | %
|
|---|
| 279 | In { \sc Geant4} XTR generation {\em inside} or {\em after} radiators is
|
|---|
| 280 | described as a discrete electromagnetic process. It is convenient for the
|
|---|
| 281 | description of tracks in magnetic fields and can be used for the cases when
|
|---|
| 282 | the radiating charge experiences a scattering inside the radiator. The base
|
|---|
| 283 | class {\tt G4VXTRenergyLoss} is responsible for the creation of tables with
|
|---|
| 284 | integral energy and angular distributions of XTR photons. It also contains
|
|---|
| 285 | the {\tt PostDoIt} function providing XTR photon generation and motion
|
|---|
| 286 | (if fExitFlux=true) through a XTR radiator to its boundary. Particular models
|
|---|
| 287 | like {\tt G4RegularXTRadiator} implement the pure virtual function
|
|---|
| 288 | {\tt GetStackFactor}, which calculates the response of the XTR radiator
|
|---|
| 289 | reflecting its geometry. Included below are some comments for the declaration
|
|---|
| 290 | of XTR in a user application.
|
|---|
| 291 |
|
|---|
| 292 | In the physics list one should pass to the XTR process additional
|
|---|
| 293 | details of the XTR radiator involved:
|
|---|
| 294 |
|
|---|
| 295 | \begin{verbatim}
|
|---|
| 296 | // In PhysicsList of an application
|
|---|
| 297 | else if (particleName == "e-") // Construct processes for electron with XTR
|
|---|
| 298 | {
|
|---|
| 299 | pmanager->AddProcess(new G4MultipleScattering, -1, 1,1 );
|
|---|
| 300 | pmanager->AddProcess(new G4eBremsstrahlung(), -1,-1,1 );
|
|---|
| 301 | pmanager->AddProcess(new Em10StepCut(), -1,-1,1 );
|
|---|
| 302 | // in regular radiators:
|
|---|
| 303 | pmanager->AddDiscreteProcess(
|
|---|
| 304 | new G4RegularXTRadiator // XTR dEdx in general regular radiator
|
|---|
| 305 | // new G4XTRRegularRadModel - XTR flux after general regular radiator
|
|---|
| 306 | // new G4TransparentRegXTRadiator - XTR dEdx in transparent
|
|---|
| 307 | // regular radiator
|
|---|
| 308 | // new G4XTRTransparentRegRadModel - XTR flux after transparent
|
|---|
| 309 | // regular radiator
|
|---|
| 310 | (pDet->GetLogicalRadiator(), // XTR radiator
|
|---|
| 311 |
|
|---|
| 312 | pDet->GetFoilMaterial(), // real foil
|
|---|
| 313 | pDet->GetGasMaterial(), // real gas
|
|---|
| 314 | pDet->GetFoilThick(), // real geometry
|
|---|
| 315 | pDet->GetGasThick(),
|
|---|
| 316 | pDet->GetFoilNumber(),
|
|---|
| 317 | "RegularXTRadiator"));
|
|---|
| 318 | // or for foam/fiber radiators:
|
|---|
| 319 | pmanager->AddDiscreteProcess(
|
|---|
| 320 | new G4GammaXTRadiator - XTR dEdx in general foam/fiber radiator
|
|---|
| 321 | // new G4XTRGammaRadModel - XTR flux after general foam/fiber radiator
|
|---|
| 322 | ( pDet->GetLogicalRadiator(),
|
|---|
| 323 | 1000.,
|
|---|
| 324 | 100.,
|
|---|
| 325 | pDet->GetFoilMaterial(),
|
|---|
| 326 | pDet->GetGasMaterial(),
|
|---|
| 327 | pDet->GetFoilThick(),
|
|---|
| 328 | pDet->GetGasThick(),
|
|---|
| 329 | pDet->GetFoilNumber(),
|
|---|
| 330 | "GammaXTRadiator"));
|
|---|
| 331 | }
|
|---|
| 332 | \end{verbatim}
|
|---|
| 333 | Here for the foam/fiber radiators the values 1000 and 100 are the $\nu$ parameters
|
|---|
| 334 | (which can be varied) of the Gamma distribution for the foil and gas gaps,
|
|---|
| 335 | respectively. Classes G4TransparentRegXTRadiator and G4XTRTransparentRegRadModel
|
|---|
| 336 | correspond (\ref{Nntr}) to $n$ and $n_{eff}$, respectively.
|
|---|
| 337 |
|
|---|
| 338 | \subsection{Status of this document}
|
|---|
| 339 | 18.11.05 modified by V.Grichine \\
|
|---|
| 340 | 29.11.02 re-written by D.H. Wright \\
|
|---|
| 341 | 29.05.02 created by V.Grichine \\
|
|---|
| 342 |
|
|---|
| 343 | \begin{latexonly}
|
|---|
| 344 |
|
|---|
| 345 | \begin{thebibliography}{99}
|
|---|
| 346 |
|
|---|
| 347 | \bibitem{griCR} V.M. Grichine,
|
|---|
| 348 | {\em Nucl. Instr. and Meth.}, {\bf A482} (2002) 629.
|
|---|
| 349 |
|
|---|
| 350 | \bibitem{gri01} V.M. Grichine, {\em Physics Letters}, {\bf B525} (2002) 225-239
|
|---|
| 351 |
|
|---|
| 352 | \bibitem{gar71} G.M. Garibyan,
|
|---|
| 353 | {\em Sov. Phys. JETP} {\bf 32} (1971) 23.
|
|---|
| 354 |
|
|---|
| 355 | \bibitem{fab75} C.W. Fabian and W. Struczinski
|
|---|
| 356 | {\em Physics Letters}, {\bf B57 } (1975) 483.
|
|---|
| 357 |
|
|---|
| 358 | \bibitem{gar74} G.M. Garibian, L.A. Gevorgian, and C. Yang,
|
|---|
| 359 | {\em Sov. Phys.- JETP, 39 (1975) 265.}
|
|---|
| 360 |
|
|---|
| 361 | \bibitem{g4xtr} J. Apostolakis, S. Giani, V. Grichine et al.,
|
|---|
| 362 | {\em Comput. Phys. Commun.} {\bf 132} (2000) 241.
|
|---|
| 363 |
|
|---|
| 364 | \end{thebibliography}
|
|---|
| 365 |
|
|---|
| 366 | \end{latexonly}
|
|---|
| 367 |
|
|---|
| 368 | \begin{htmlonly}
|
|---|
| 369 |
|
|---|
| 370 | \subsection{Bibliography}
|
|---|
| 371 |
|
|---|
| 372 | \begin{enumerate}
|
|---|
| 373 | \item V.M. Grichine,
|
|---|
| 374 | {\em Nucl. Instr. and Meth.}, {\bf A482} (2002) 629.
|
|---|
| 375 |
|
|---|
| 376 | \item V.M. Grichine, {\em Physics Letters}, {\bf B525} (2002) 225-239
|
|---|
| 377 |
|
|---|
| 378 | \item G.M. Garibyan,
|
|---|
| 379 | {\em Sov. Phys. JETP} {\bf 32} (1971) 23.
|
|---|
| 380 |
|
|---|
| 381 | \item C.W. Fabian and W. Struczinski
|
|---|
| 382 | {\em Physics Letters}, {\bf B57 } (1975) 483.
|
|---|
| 383 |
|
|---|
| 384 | \item G.M. Garibian, L.A. Gevorgian, and C. Yang,
|
|---|
| 385 | {\em Sov. Phys.- JETP, 39 (1975) 265.}
|
|---|
| 386 |
|
|---|
| 387 | \item J. Apostolakis, S. Giani, V. Grichine et al.,
|
|---|
| 388 | {\em Comput. Phys. Commun.} {\bf 132} (2000) 241.
|
|---|
| 389 |
|
|---|
| 390 | \end{enumerate}
|
|---|
| 391 |
|
|---|
| 392 | \end{htmlonly}
|
|---|
| 393 |
|
|---|
| 394 |
|
|---|