source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/hadronic/he_elastic/elastic_he.tex

Last change on this file was 1211, checked in by garnier, 15 years ago

CVS update

File size: 12.4 KB
Line 
1\chapter[Hadron-nucleus Elastic Scattering at Medium/High Energy]{Hadron-nucleus Elastic Scattering at Medium and High Energy}
2
3\vspace{2ex}
4\section{Method of Calculation}
5
6The Glauber model \cite{helast.1} is used as an alternative method of
7calculating differential cross sections for elastic and quasi-elastic
8hadron-nucleus scattering at high and intermediate energies.
9
10For high energies this includes corrections for inelastic screening and
11for quasi-elastic scattering the exitation of a discrete level or a state in
12the continuum is considered.
13 
14The usual expression for the Glauber model amplitude for multiple scattering
15was used
16
17\begin{equation}
18   F(q)=\frac{ik}{2\pi} \int d^2{b}e^{\vec{\mathstrut q}
19   \cdot \vec{\mathstrut b}} M(\vec b) .
20\label{helast.eq1}
21\end{equation}
22Here $M(\vec b)$ is the hadron-nucleus amplitude in the impact
23parameter representation
24\begin{equation}
25 M(\vec b) = 1-[1-e^{-A\int d^{3}r\Gamma(\vec{\mathstrut b}-
26      \vec{\mathstrut s})\rho(\vec {r})}]^A,
27 \label{helast.eq2}
28\end{equation}
29$k$ is the incident particle momentum,
30$\vec q = \vec k' - \vec k$  is the momentum transfer, and
31$\vec k'$ is the scattered particle momentum.
32Note that $\left| \vec q \right| ^2 = -t$ - invariant momentum transfer
33squared in the center of mass system.
34$\Gamma(\vec {b})$ is the hadron-nucleon amplitude of
35elastic scattering in the impact-parameter representation
36
37\begin{equation}
38  \Gamma(\vec b)=\frac{\displaystyle 1}
39                      {\displaystyle 2\pi ik^{hN}}
40  \int d\vec {q} e^{-\vec {\mathstrut q} \cdot \vec{\mathstrut b}} 
41  f(\vec {q}).
42 \label{helast.eq3}
43\end{equation}
44
45The exponential parameterization of the hadron-nucleon amplitude is usually
46used:
47
48\begin{equation}
49  f(\vec {q})=\frac{\displaystyle ik^{hN}\sigma^{hN}}{2\pi}
50   e^{-0.5q^2B}.
51 \label{helast.eq4}
52\end{equation}
53Here  $\sigma^{hN}=\sigma_{tot}^{hN}(1-i\alpha)$,
54$\sigma_{tot}^{hN}$ is the total
55cross section of a hadron-nucleon scattering, $B$ is the slope of the
56diffraction cone and $\alpha$ is the ratio of the real to imaginary parts of
57the amplitude at $q=0$.  The value $k^{hN}$ is the hadron momentum in the
58hadron-nucleon coordinate system.
59
60The important difference of these calculations from the usual ones
61is that the two-gaussian form of the nuclear density was used
62
63\begin{equation}
64   \rho(r) = C (e^{-(r/R_{1})^2}-pe^{-(r/R_2)^2}),   
65 \label{helast.eq5}
66\end{equation}
67where $R_1$, $R_2$ and $p$ are the fitting parameters and $C$ is a
68normalization constant.
69
70This density representation allows the expressions for amplitude and
71differential cross section to be put into analytical form.  It was earlier
72used for light \cite{helast.2, helast.3} and medium \cite{helast.4} nuclei.
73Described below is an extension of this method to heavy nuclei.
74The form \ref{helast.eq5} is not physical for a heavy nucleus, but
75nevertheless works rather well (see figures below).  The reason is that
76the nucleus absorbs the hadrons very strongly, especially at small impact
77parameters where the absorption is full. As a result only the peripherial part
78of the nucleus participates in elastic scattering.  Eq. \ref{helast.eq5}
79therefore describes only the edge of a heavy nucleus.
80
81 Substituting Eqs. \ref{helast.eq5} and \ref{helast.eq4} into Eqs.
82\ref{helast.eq1}, \ref{helast.eq2} and \ref{helast.eq3} yields the following
83formula
84
85\begin{eqnarray}
86   F(q) = \frac{ik\pi}{2} 
87   \sum\limits_{k=1}^A (-1)^k {A\choose k} 
88   [\frac{\sigma^{hN}}{2\pi(R_1^3-pR_2^3)}]^k
89   \sum\limits_{m=0}^{k} (-1)^m {k \choose m}
90   \left[ \frac{R_1^3}{R_1^2+2B}
91   \right]^{k-m} \nonumber
92\end{eqnarray}
93
94\begin{eqnarray}
95  \times \qquad {} \left[
96  \frac{pR_2^3}{R_2^2+2B}
97  \right]^{m} \left(
98  \frac{m}{R_2^2+2B}+\frac{k-m}{R_1^2+2B} \right)^{-1} \nonumber
99\end{eqnarray}
100
101\begin{eqnarray}
102  \times \qquad {} \exp\left[ -\frac{-q^2}{4} 
103  \left(
104  \frac{m}{R_2^2+2B}+
105  \frac{k-m}{R_1^2+2B} \right)^{-1}
106  \right].
107\label{helast.eq6}
108\end{eqnarray}
109% \end{eqnarray}
110
111An analogous procedure can be used to get the inelastic screening corrections
112to the hadron-nucleus amplitude $\Delta M(\vec b)$ \cite{helast.5}.
113In this case an intermediate inelastic diffractive state is created which
114rescatters on the nucleons of the nucleus and then returns into the initial
115hadron. Hence it is nessesary to integrate the production cross section over
116the mass distribution of the exited system $\frac{d\sigma^{diff}}{dtdM_x^2}$.
117The expressions for the corresponding amplitude are quite long and so are not
118presented here.  The corrections for the total cross-sections can be found in
119\cite{helast.5}.
120
121The full amplitude is the sum $M(\vec b)+ \Delta M(\vec b)$.
122
123The differential cross section is connected with the amplitude in the
124following way
125
126\begin{equation}
127  \frac{d\sigma}{d\Omega_{CM}}=\left| F(q) \right|^2, \qquad 
128   \frac{d\sigma}{|dt|}=\frac{d\sigma}{dq_{CM}^2}=
129  \frac{\pi}{k_{CM}^2} \left|F(q) \right|^2.
130 \label{helast.eq7}
131\end{equation}
132                     
133The main energy dependence of the hadron-nucleus elastic scattering
134cross section comes from the energy dependence of the parameters of
135hadron-nucleon scattering
136($\sigma_{tot}^{hN} \alpha$, $B$ and
137$\frac{d\sigma^{diff}}{dtdM_x^2}$).
138At interesting energies these parameters were fixed at their well-known
139values.  The fitting of the nuclear density parameters was performed
140over a wide range of atomic numbers $(A=4 - 208)$ using experimental data
141on proton-nuclei elastic scattering at a kinetic energy of $T_p=1 GeV$.
142
143The fitting was perfomed both for individual nuclei and for the entire set
144of nuclei at once.
145%%In the last event the following dependensies for nuclei
146%%parameters $(for A=12 \div 208)$ were obtained
147
148%\vspace{2ex}
149%$R_1=4.18A^{0.302}$, $R_2=3.81(A-10)^{0.268}$, $p=0.95$.
150%\hspace{3cm} (8)
151%\vspace{2ex}
152
153%%\vspace{2ex}
154%%$R_1=4.45(A-1)^{0.309}$, $R_2=2.3A^{0.36}$,
155
156%%$p=0.176+0.0017A+8.7.10^{-6}A^2$.
157%%\hspace{3cm} (8)
158%%\vspace{2ex}
159
160It is necessary to note that for every nucleus
161an optimal set of density parameters exists and it
162differs slightly from the one derived for the full set of nuclei.
163
164A comparision of the phenomenological cross sections \cite{helast.6} with
165experiment is presented in Figs. \ref{helast.fig1} - \ref{helast.fig9}
166
167% where the data of the proton-nucleus scattering
168% are imaged.
169 
170In this comparison, the individual nuclei parameters were used.
171The experimental data were obtained in Gatchina (Russia) and in
172Saclay (France) \cite{helast.6}.
173The horizontal axis is the scattering angle in the center of mass
174system $\Theta_{CM}$ and the vertical axis is
175$\frac{\displaystyle d\sigma}{\displaystyle d\Omega_{CM}}$ 
176in $\frac{\displaystyle mb}{\displaystyle Ster}$.
177%The lower curve in the figures is the diferencial cross-section
178%of a coherent elastic scattering but upper one is the
179%cross-section for noncoherent scattering.
180
181Comparisions were also made for $p ^4He$ elastic scatering at
182$T_ = 1 GeV$[7], $45 GeV$ and $301 GeV$ [3]. The resulting
183cross sections $\frac {d \sigma}{d\left| t \right|}$ are shown
184in the Figs. \ref{helast.fig10} - \ref{helast.fig12}.
185
186In order to generate events the distribution function ${\cal F}$ of a
187corresponding process must be known.
188The differential cross section is proportional to the density distribution.
189Therefore to get the distribution function it is sufficient to integrate the
190differential cross section and normalize it:
191
192\begin{equation}
193    {\cal F}(q^2)=
194 \frac
195 {\displaystyle
196   \int\limits_{0}^{q^2}d(q^2)
197   \frac {\displaystyle d\sigma}{\displaystyle d(q^2)}
198  }
199 {\displaystyle
200   \int\limits_{0}^{q_{max}^2}d(q^2)
201   \frac {\displaystyle d\sigma}{\displaystyle d(q^2)} .
202  }
203\label{helast.eq8}
204\end{equation}
205
206Expressions \ref{helast.eq6} and \ref{helast.eq7} allow analytic integration
207in Eq. \ref{helast.eq8} but the result is too long to be given here.
208
209For light and medium nuclei the analytic expression is more convenient for
210calculations than the numerical integration of Eq. \ref{helast.eq8}, but for
211heavy nuclei the latter is preferred due to the large number of terms in the
212analytic expression.
213
214\section{Status of this document}
21518.06.04 created by Nikolai Starkov \\
21619.06.04 re-written for spelling and grammar by D.H. Wright \\
217
218
219\begin{latexonly}
220
221\begin{thebibliography}{599}
222
223\bibitem{helast.1} R.J. Glauber,
224    in "High Energy Physics and Nuclear Structure",
225    edited by S. Devons (Plenum Press, NY 1970).
226
227
228\bibitem{helast.2} R. H. Bassel, W. Wilkin, Phys. Rev., 174, p. 1179, 1968; \\ 
229T. T. Chou, Phys. Rev., 168, 1594, 1968; \\
230M. A. Nasser, M. M. Gazzaly, J. V. Geaga et al., Nucl. Phys.,
231 A312, pp. 209-216, 1978.
232
233
234\bibitem{helast.3} Bujak, P. Devensky, A. Kuznetsov et al.,
235Phys. Rev., D23, N 9, pp. 1895-1910, 1981.
236
237
238\bibitem{helast.4} V. L. Korotkikh, N. I. Starkov, Sov. Journ. of Nucl. Phys.,
239v. 37, N 4, pp. 610-613, 1983; \\
240 N. T. Ermekov, V. L. Korotkikh,
241N. I. Starkov, Sov. Journ. of Nucl. Phys., 33, N 6, pp. 775-777,
2421981.
243
244 
245\bibitem{helast.5} R.A. Nam, S. I. Nikol'skii, N. I. Starkov et al.,
246Sov. Journ. of Nucl. Phys., v. 26, N 5,  pp. 550-555, 1977.
247
248
249\bibitem{helast.6} G.D. Alkhazov et al., Phys. Rep., 1978, C42, N 2, pp. 89-144;
250\bibitem{helast.7} J. V. Geaga, M. M. Gazzaly, G. J. Jgo et al.,
251  Phys. Rev. Lett. 38, N 22, pp. 1265-1268; \\
252 S. J. Wallace. Y. Alexander,  Phys. Rev. Lett. 38, N 22, pp. 1269-1272.
253
254\end{thebibliography}
255
256\end{latexonly}
257
258\begin{htmlonly}
259
260\section{Bibliography}
261
262\begin{enumerate}
263\item R.J. Glauber,
264    in "High Energy Physics and Nuclear Structure",
265    edited by S. Devons (Plenum Press, NY 1970).
266
267
268\item R. H. Bassel, W. Wilkin, Phys. Rev., 174, p. 1179, 1968; \\ 
269T. T. Chou, Phys. Rev., 168, 1594, 1968; \\
270M. A. Nasser, M. M. Gazzaly, J. V. Geaga et al., Nucl. Phys.,
271 A312, pp. 209-216, 1978.
272
273
274\item Bujak, P. Devensky, A. Kuznetsov et al.,
275Phys. Rev., D23, N 9, pp. 1895-1910, 1981.
276
277
278\item V. L. Korotkikh, N. I. Starkov, Sov. Journ. of Nucl. Phys.,
279v. 37, N 4, pp. 610-613, 1983; \\
280 N. T. Ermekov, V. L. Korotkikh,
281N. I. Starkov, Sov. Journ. of Nucl. Phys., 33, N 6, pp. 775-777,
2821981.
283
284 
285\item R.A. Nam, S. I. Nikol'skii, N. I. Starkov et al.,
286Sov. Journ. of Nucl. Phys., v. 26, N 5,  pp. 550-555, 1977.
287
288
289\item G.D. Alkhazov et al., Phys. Rep., 1978, C42, N 2, pp. 89-144;
290\bibitem{helast.7} J. V. Geaga, M. M. Gazzaly, G. J. Jgo et al.,
291  Phys. Rev. Lett. 38, N 22, pp. 1265-1268; \\
292 S. J. Wallace. Y. Alexander,  Phys. Rev. Lett. 38, N 22, pp. 1269-1272.
293
294\end{enumerate}
295
296\end{htmlonly}
297
298
299\begin{figure}
300  \includegraphics[scale=0.7]{hadronic/he_elastic/p_Be9_1.eps}
301  \caption{Elastic proton scattering on $^9$Be at 1 GeV}
302  \label{helast.fig1}
303\end{figure}
304\begin{figure}
305  \includegraphics[scale=0.7]{hadronic/he_elastic/p_B11_1.eps}
306  \caption{Elastic proton scattering on $^{11}$B at 1 GeV}
307  \label{helast.fig2}
308\end{figure}
309\begin{figure}
310  \includegraphics[scale=0.7]{hadronic/he_elastic/p_C12_1.eps}
311  \caption{Elastic proton scattering on $^{12}$C at 1 GeV}
312  \label{helast.fig3}
313\end{figure}
314\begin{figure}
315  \includegraphics[scale=0.7]{hadronic/he_elastic/p_016_1.eps}
316  \caption{Elastic proton scattering on $^{16}$O at 1 GeV}
317  \label{helast.fig4}
318\end{figure}
319\begin{figure}
320  \includegraphics[scale=0.7]{hadronic/he_elastic/p_Si28_1.eps}
321  \caption{Elastic proton scattering on $^{28}$Si at 1 GeV}
322  \label{helast.fig5}
323\end{figure}
324\begin{figure}
325  \includegraphics[scale=0.7]{hadronic/he_elastic/p_Ca40_1.eps}
326  \caption{Elastic proton scattering on $^{40}$Ca at 1 GeV}
327  \label{helast.fig6}
328\end{figure}
329\begin{figure}
330  \includegraphics[scale=0.7]{hadronic/he_elastic/p_Ni58_1.eps}
331  \caption{Elastic proton scattering on $^{58}$Ni at 1 GeV}
332  \label{helast.fig7}
333\end{figure}
334\begin{figure}
335  \includegraphics[scale=0.7]{hadronic/he_elastic/p_Zr90_1.eps}
336  \caption{Elastic proton scattering on $^{90}$Zr at 1 GeV}
337 \label{helast.fig8}
338\end{figure}
339\begin{figure}
340  \includegraphics[scale=0.7]{hadronic/he_elastic/p_Pb208_1.eps}
341  \caption{Elastic proton scattering on $^{208}$Pb at 1 GeV}
342  \label{helast.fig9}
343\end{figure}
344
345\begin{figure}
346  \includegraphics[scale=0.7]{hadronic/he_elastic/p_He4_1.eps}
347  \caption{Elastic proton scattering on $^4$He at 1 GeV}
348  \label{helast.fig10}
349\end{figure}
350\begin{figure}
351  \includegraphics[scale=0.7]{hadronic/he_elastic/p_He4_45.eps}
352  \caption{Elastic proton scattering on $^4$He at 45 GeV}
353  \label{helast.fig11}
354\end{figure}
355\begin{figure}
356  \includegraphics[scale=0.7]{hadronic/he_elastic/p_He4_301.eps}
357  \caption{Elastic proton scattering on $^4$He at 301 GeV}
358  \label{helast.fig12}
359\end{figure}
Note: See TracBrowser for help on using the repository browser.