| 1 | \chapter{Leading Particle Bias}
|
|---|
| 2 |
|
|---|
| 3 | \section{Overview}
|
|---|
| 4 | {\it G4Mars5GeV} is an inclusive event generator for hadron\,(photon)
|
|---|
| 5 | interactions with nuclei, and translated from the MARS code system\,(MARS13\,(98)).
|
|---|
| 6 | To construct a cascade tree, only a fixed
|
|---|
| 7 | number of particles are generated at each vertex.
|
|---|
| 8 | A corresponding statistical weight is assigned to each secondary particle
|
|---|
| 9 | according to its type and phase-space. Rarely-produced particles
|
|---|
| 10 | or interesting phase-space region can be enhanced. \\ [2mm]
|
|---|
| 11 | %%
|
|---|
| 12 | N.B. This inclusive simulation is implemented in Geant4 partially
|
|---|
| 13 | for the moment, not completed yet. \\ [3mm]
|
|---|
| 14 | %%
|
|---|
| 15 | {\bf MARS Code System} \\
|
|---|
| 16 | MARS is a set of Monte Carlo programs for inclusive simulation
|
|---|
| 17 | of particle interactions, and high multiplicity or rare events
|
|---|
| 18 | can be simulated fast with its sophisticated biasing techniques.
|
|---|
| 19 | For the details on the MARS code system, see \cite{MARS98, MARSWWW}. \\
|
|---|
| 20 |
|
|---|
| 21 | \section{Method}
|
|---|
| 22 | In {\it G4Mars5GeV}, three secondary hadrons are generated
|
|---|
| 23 | in the final state of an hadron(photon)-nucleus inelastic interaction,
|
|---|
| 24 | and a statistical weight is assigned to each particle
|
|---|
| 25 | according to its type, energy and emission angle.
|
|---|
| 26 | %% what really affects on weights?
|
|---|
| 27 | %%
|
|---|
| 28 | In this code, energies, momenta and weights of the secondaries are sampled,
|
|---|
| 29 | and the primary particle is simply terminated at the vertex.
|
|---|
| 30 | The allowed projectile kinetic energy is $E_0 \leq $~5~GeV, and
|
|---|
| 31 | following particles can be simulated;
|
|---|
| 32 | $$
|
|---|
| 33 | p,~n,~\pi^+,~\pi^-,~K^+,~K^-,~\gamma,~\bar{p}~.
|
|---|
| 34 | $$
|
|---|
| 35 |
|
|---|
| 36 | Prior to a particle generation, a Coulomb barrier is considered
|
|---|
| 37 | for projectile charged hadrons\,($p$, $\pi^+$, $K^+$ and $\bar{p}$)
|
|---|
| 38 | with kinetic energy of less than 200 MeV. The coulomb potential
|
|---|
| 39 | $V_{\rm coulmb}$ is given by
|
|---|
| 40 | \begin{equation}
|
|---|
| 41 | V_{\rm columb} = 1.11\times10^{-3} \times Z/A^{1/3}~~~~{\rm (GeV)},
|
|---|
| 42 | \end{equation}
|
|---|
| 43 | where $Z$~and~$A$ are atomic and mass number, respectivelly. \\ [2mm]
|
|---|
| 44 | %%
|
|---|
| 45 | %% secondary particle generation
|
|---|
| 46 | %%
|
|---|
| 47 | \subsection{Inclusive hadron production}
|
|---|
| 48 | %%
|
|---|
| 49 | The following three steps are carried out in a sequence
|
|---|
| 50 | to produce secondary particles:
|
|---|
| 51 | \begin{itemize}
|
|---|
| 52 | \item nucleon production,
|
|---|
| 53 | \item charged pion/kaon production and
|
|---|
| 54 | \item neutral pion production.
|
|---|
| 55 | \end{itemize}
|
|---|
| 56 | %%
|
|---|
| 57 | These processes are performed independently, i.e.
|
|---|
| 58 | the energy and momentum conservation law is broken at each event, however,
|
|---|
| 59 | fulfilled on the average over a number of events simulated. \\ [5mm]
|
|---|
| 60 | %%
|
|---|
| 61 | %% -- nucleon production
|
|---|
| 62 | {\bf nucleon production} \\ [1mm]
|
|---|
| 63 | Projectiles $K^\pm$ and $\bar{p}$ are
|
|---|
| 64 | replaced with $\pi^\pm$ and $p$, individually to generate
|
|---|
| 65 | the secondary nucleon.
|
|---|
| 66 | Either of neutron or proton is selected randomly as the secondary
|
|---|
| 67 | except for the case of gamma projectiling.
|
|---|
| 68 | The gamma is handled as a pion. \\ [5mm]
|
|---|
| 69 | %% reason??
|
|---|
| 70 | %%
|
|---|
| 71 | %% -- nucleon production
|
|---|
| 72 | {\bf charged pion/kaon production} \\ [1mm]
|
|---|
| 73 | If the incident nucleon does not have enough energy to produce
|
|---|
| 74 | the pion\,($> 280$ MeV), charged and neutral pions are not produced.
|
|---|
| 75 | A charged pion is selected with the equal probability, and a bias is eliminated
|
|---|
| 76 | with the appropriate weight which is assigned taking into account the difference between
|
|---|
| 77 | $\pi^+$ and $\pi^-$ both for production probability and for inclusive spectra.
|
|---|
| 78 | It is replaced with a charged kaon a certain fraction
|
|---|
| 79 | of the time, that depends on the projectile energy if $E_0 > 2.1$~GeV.
|
|---|
| 80 | The ratio of kaon replacement is given by
|
|---|
| 81 | \begin{equation}
|
|---|
| 82 | R_{\rm kaon} = 1.3 \times \biggl\{ C_{\rm min} + ( C - C_{\rm min} )
|
|---|
| 83 | \frac{ \log(E_0/2) }{ \log(100/2) } \biggr\}~~~~~
|
|---|
| 84 | ( 2.1 \leq E_0 \leq 5.2~{\rm GeV} ),
|
|---|
| 85 | \end{equation}
|
|---|
| 86 | where $C_{\rm min}$ is 0.03\,(0.08) for nucleon\,(others) projectiling, and \\
|
|---|
| 87 | {\it ~\hspace*{35mm}Produced particle~\hspace*{5mm}
|
|---|
| 88 | Projectile particle}
|
|---|
| 89 | \begin{equation}
|
|---|
| 90 | C = \left\{
|
|---|
| 91 | \begin{array}{ll}
|
|---|
| 92 | 0.071 & (~\pi^+~) \\
|
|---|
| 93 | 0.083 & (~\pi^-~)
|
|---|
| 94 | \end{array} \right\}
|
|---|
| 95 | \times
|
|---|
| 96 | \left\{
|
|---|
| 97 | \begin{array}{ll}
|
|---|
| 98 | 1.3 & (~\pi^\pm~) \\
|
|---|
| 99 | 2.0 & (~K^\pm~) \\
|
|---|
| 100 | 1.0 & (~{\rm others}~)
|
|---|
| 101 | \end{array} \right\}
|
|---|
| 102 | \end{equation}
|
|---|
| 103 | A similar strangeness replacement is not considered for nucleon production.
|
|---|
| 104 | \\ [3mm]
|
|---|
| 105 | %%
|
|---|
| 106 | %% -- nucleon production
|
|---|
| 107 | %%
|
|---|
| 108 | %%
|
|---|
| 109 |
|
|---|
| 110 | \subsection{Sampling of energy and emission angle of the secondary}
|
|---|
| 111 | %
|
|---|
| 112 | The energy and emission angle of the secondary particle depends on
|
|---|
| 113 | projectile energy. There are formulae depending on whether or not
|
|---|
| 114 | the interaction particle\,(IP) is identical to the secondary\,(JP). \\ [2mm]
|
|---|
| 115 | %%
|
|---|
| 116 | %%
|
|---|
| 117 | For IP $\neq$ JP, the secondary energy $E_2$ is simply given by
|
|---|
| 118 | \begin{equation}
|
|---|
| 119 | E_2 = E_{\rm th} \times \biggl(\frac{E_{\rm max}}
|
|---|
| 120 | {E_{\rm th}}\biggr)^\epsilon~~~~~~~~~~~~~~{\rm (MeV)}~,
|
|---|
| 121 | \end{equation}
|
|---|
| 122 | where $E_{\rm max} = max\,(E_0,0.5\,{\rm MeV})$, $E_{\rm th} = 1$ MeV,
|
|---|
| 123 | and $\epsilon$ is a uniform random between 0 and 1. \\ [2mm]
|
|---|
| 124 | %%
|
|---|
| 125 | %%
|
|---|
| 126 | For IP = JP,
|
|---|
| 127 | \begin{equation}\label{eq:energy}
|
|---|
| 128 | E_2 = \left\{
|
|---|
| 129 | \begin{array}{l l l}
|
|---|
| 130 | E_{\rm th} + \epsilon\,(E_{\rm max} - E_{\rm th}) &
|
|---|
| 131 | & E_0 < 100\,E_{\rm th}~{\rm MeV} \\
|
|---|
| 132 | E_{\rm th}\times\,e^{\epsilon\,(\beta+99)} & {\rm (MeV)}
|
|---|
| 133 | & E_0 \geq 100\,E_{\rm th}~{\rm and}~\epsilon < \eta \\
|
|---|
| 134 | E_0\times\bigl( \beta\,(\epsilon - 1) + 1 + 99\epsilon )/100 &
|
|---|
| 135 | & E_0 \geq 100\,E_{\rm th}~{\rm and}~\epsilon \geq \eta
|
|---|
| 136 | \end{array} \right.
|
|---|
| 137 | \end{equation}
|
|---|
| 138 | Here, $\beta = \log(E_0/100\,E_{\rm th})$ and
|
|---|
| 139 | $\eta = \beta/(99 + \beta)$.
|
|---|
| 140 | If resulting $E_2$ is less than 0.5 MeV, nothing is generated. \\ [5mm]
|
|---|
| 141 | %
|
|---|
| 142 | %
|
|---|
| 143 | {\bf Angular distribution} \\ [1mm]
|
|---|
| 144 | %
|
|---|
| 145 | The angular distribution is mainly determined by the energy ratio
|
|---|
| 146 | of the secondary to the projectile\,(i.e.
|
|---|
| 147 | the emission angle and probability of the occurrence
|
|---|
| 148 | increase as the energy ratio decreases).
|
|---|
| 149 | The emission angle of the secondary particle with respect to the incident direction
|
|---|
| 150 | is given by
|
|---|
| 151 | \begin{equation}\label{eq:angle}
|
|---|
| 152 | \theta = - \log \bigl( 1 - \epsilon ( 1 - e^{-\pi\,\tau} ) \bigr)/
|
|---|
| 153 | \tau~,
|
|---|
| 154 | \end{equation}
|
|---|
| 155 | where $\tau = E_0/5(E_0 + 1/2)$. \\
|
|---|
| 156 | %%
|
|---|
| 157 | %%
|
|---|
| 158 | \subsection{Sampling statistical weight}
|
|---|
| 159 | The kinematics of the secondary particle are determined randomly
|
|---|
| 160 | using the above formulae\,(\ref{eq:energy},\ref{eq:angle}).
|
|---|
| 161 | A statistical weight is calculated and assigned to each generated particle
|
|---|
| 162 | to reproduce a true inclusive spectrum in the event.
|
|---|
| 163 | The weight is given by
|
|---|
| 164 | \begin{equation}
|
|---|
| 165 | D2N = V10({\rm JP}) \times DW\,(E) \times DA\,(\theta) \times
|
|---|
| 166 | V1\,(E,\theta,{\rm JP}),
|
|---|
| 167 | \end{equation}
|
|---|
| 168 | %%
|
|---|
| 169 | where \\
|
|---|
| 170 | $\bullet~V10$ is the statistical weight for the production rate
|
|---|
| 171 | based on neutral pion production\,($V10 = 1$).
|
|---|
| 172 | \begin{equation}
|
|---|
| 173 | V10 = \left\{
|
|---|
| 174 | \begin{array}{ll}
|
|---|
| 175 | 2.0\,(2.5) & {\rm nucleon~production\,(the~case~of~gamma~projectile)} \\
|
|---|
| 176 | 2.1 & {\rm charged~pion/kaon~production}
|
|---|
| 177 | \end{array} \right.
|
|---|
| 178 | \end{equation}\vspace*{2mm}\\
|
|---|
| 179 | %%
|
|---|
| 180 | %%
|
|---|
| 181 | $\bullet$~DW and DA are dominantly determined by the secondary energy and
|
|---|
| 182 | emission angle, individually. \\ [2mm]
|
|---|
| 183 | %%
|
|---|
| 184 | %%
|
|---|
| 185 | $\bullet$~V1 is a true double-differential production cross-section (divided by the total
|
|---|
| 186 | inelastic cross-section)~\cite{MARS98}, calculated in {\it G4Mars5GeV::D2N2}
|
|---|
| 187 | according to the projectile type and energy, target atomic mass, and simulated secondary
|
|---|
| 188 | energy, emission angle and particle type. \\
|
|---|
| 189 |
|
|---|
| 190 | \section{Status of this document}
|
|---|
| 191 | 11.06.2002 created by N. Kanaya. \\
|
|---|
| 192 | 20.06.2002 modified by N.V.Mokhov. \\
|
|---|
| 193 |
|
|---|
| 194 |
|
|---|
| 195 | \begin{latexonly}
|
|---|
| 196 |
|
|---|
| 197 | \begin{thebibliography}{599}
|
|---|
| 198 | \bibitem{MARS98} N.V.~Mokhov, {\it The MARS Code System User's Guide, Version 13(98)},
|
|---|
| 199 | Fermilab-FN-628.
|
|---|
| 200 |
|
|---|
| 201 | \bibitem{MARSWWW} {\it http://www-ap.fnal.gov/MARS/}
|
|---|
| 202 | \end{thebibliography}
|
|---|
| 203 |
|
|---|
| 204 | \end{latexonly}
|
|---|
| 205 |
|
|---|
| 206 | \begin{htmlonly}
|
|---|
| 207 |
|
|---|
| 208 | \section{Bibliography}
|
|---|
| 209 |
|
|---|
| 210 | \begin{enumerate}
|
|---|
| 211 | \item N.V.~Mokhov, {\it The MARS Code System User's Guide, Version 13(98)},
|
|---|
| 212 | Fermilab-FN-628.
|
|---|
| 213 |
|
|---|
| 214 | \item {\it http://www-ap.fnal.gov/MARS/}
|
|---|
| 215 | \end{enumerate}
|
|---|
| 216 |
|
|---|
| 217 | \end{htmlonly}
|
|---|
| 218 |
|
|---|