source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/hadronic/lpbias/mars5gev.tex @ 1345

Last change on this file since 1345 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 7.7 KB
Line 
1\chapter{Leading Particle Bias} 
2
3\section{Overview}
4{\it G4Mars5GeV} is an inclusive event generator for hadron\,(photon)
5interactions with nuclei, and translated from the MARS code system\,(MARS13\,(98)).
6To construct a cascade tree, only a fixed
7number of particles are generated at each vertex.
8A corresponding statistical weight is assigned to each secondary particle
9according to its type and phase-space. Rarely-produced particles
10or interesting phase-space region can be enhanced. \\ [2mm]
11%%
12N.B. This inclusive simulation is implemented in Geant4 partially
13for the moment, not completed yet.  \\ [3mm]
14%%
15{\bf MARS Code System} \\
16MARS is a set of Monte Carlo programs for inclusive simulation
17of particle interactions, and high multiplicity or rare events
18can be simulated fast with its sophisticated biasing techniques.
19For the details on the MARS code system, see \cite{MARS98, MARSWWW}\\
20
21\section{Method}
22In {\it G4Mars5GeV}, three secondary hadrons are generated
23in the final state of an hadron(photon)-nucleus inelastic interaction,
24and a statistical weight is assigned to each particle
25according to its type, energy and emission angle.
26%% what really affects on weights?
27%%
28In this code, energies, momenta and weights of the secondaries are sampled,
29and the primary particle is simply terminated at the vertex.
30The allowed projectile kinetic energy is $E_0 \leq $~5~GeV, and
31following particles can be simulated;
32$$
33        p,~n,~\pi^+,~\pi^-,~K^+,~K^-,~\gamma,~\bar{p}~.
34$$
35
36Prior to a particle generation, a Coulomb barrier is considered
37for projectile charged hadrons\,($p$, $\pi^+$, $K^+$ and $\bar{p}$)
38with kinetic energy of less than 200 MeV. The coulomb potential
39$V_{\rm coulmb}$ is given by
40\begin{equation}
41        V_{\rm columb} = 1.11\times10^{-3} \times Z/A^{1/3}~~~~{\rm (GeV)},
42\end{equation}
43where $Z$~and~$A$ are atomic and mass number, respectivelly. \\ [2mm]
44%%
45%%      secondary particle generation
46%%
47\subsection{Inclusive hadron production}
48%%
49The following three steps are carried out in a sequence
50to produce secondary particles:
51\begin{itemize}
52\item nucleon production,
53\item charged pion/kaon production and
54\item neutral pion production.
55\end{itemize}
56%%
57These processes are performed independently, i.e.
58the energy and momentum conservation law is broken at each event, however,
59fulfilled on the average over a number of events simulated. \\ [5mm]
60%%
61%% -- nucleon production
62{\bf nucleon production} \\ [1mm]
63Projectiles $K^\pm$ and $\bar{p}$ are
64replaced with $\pi^\pm$ and $p$, individually to generate
65the secondary nucleon.
66Either of neutron or proton is selected randomly as the secondary
67except for the case of gamma projectiling.
68The gamma is handled as a pion. \\ [5mm]
69%% reason??
70%%
71%% -- nucleon production
72{\bf charged pion/kaon production} \\ [1mm]
73If the incident nucleon does not have enough energy to produce
74the pion\,($> 280$ MeV), charged and neutral pions are not produced.
75A charged pion is selected with the equal probability, and a bias is eliminated
76with the appropriate weight which is assigned taking into account the difference between
77$\pi^+$ and $\pi^-$ both for production probability and for inclusive spectra.
78It is replaced with a charged kaon a certain fraction
79of the time, that depends on the projectile energy if $E_0 > 2.1$~GeV.
80The ratio of kaon replacement is given by
81\begin{equation}
82        R_{\rm kaon} = 1.3 \times \biggl\{ C_{\rm min} + ( C - C_{\rm min} )
83        \frac{ \log(E_0/2) }{ \log(100/2) } \biggr\}~~~~~
84        ( 2.1 \leq E_0 \leq 5.2~{\rm GeV} ),
85\end{equation}
86where $C_{\rm min}$ is 0.03\,(0.08) for nucleon\,(others) projectiling, and \\
87{\it ~\hspace*{35mm}Produced particle~\hspace*{5mm}
88Projectile particle}
89\begin{equation}
90C = \left\{
91\begin{array}{ll}
920.071 & (~\pi^+~) \\
930.083 & (~\pi^-~)
94\end{array} \right\}
95\times
96\left\{
97\begin{array}{ll}
981.3 & (~\pi^\pm~) \\
992.0 & (~K^\pm~) \\
1001.0 & (~{\rm others}~)
101\end{array} \right\}
102\end{equation}
103A similar strangeness replacement is not considered for nucleon production.
104\\ [3mm]
105%%
106%% -- nucleon production
107%%
108%%
109
110\subsection{Sampling of energy and emission angle of the secondary}
111%
112The energy and emission angle of the secondary particle depends on
113projectile energy. There are formulae depending on whether or not
114the interaction particle\,(IP) is identical to the secondary\,(JP). \\ [2mm]
115%%
116%%
117For IP $\neq$ JP, the secondary energy $E_2$ is simply given by
118\begin{equation}
119        E_2 = E_{\rm th} \times \biggl(\frac{E_{\rm max}}
120        {E_{\rm th}}\biggr)^\epsilon~~~~~~~~~~~~~~{\rm (MeV)}~,
121\end{equation}
122where $E_{\rm max} = max\,(E_0,0.5\,{\rm MeV})$, $E_{\rm th} = 1$ MeV,
123and $\epsilon$ is a uniform random between 0 and 1. \\ [2mm]
124%%
125%%
126For IP = JP,
127\begin{equation}\label{eq:energy}
128E_2 = \left\{
129\begin{array}{l l l}
130E_{\rm th} + \epsilon\,(E_{\rm max} - E_{\rm th}) &
131        & E_0 < 100\,E_{\rm th}~{\rm MeV} \\
132E_{\rm th}\times\,e^{\epsilon\,(\beta+99)} & {\rm (MeV)}
133        & E_0 \geq 100\,E_{\rm th}~{\rm and}~\epsilon < \eta \\
134E_0\times\bigl( \beta\,(\epsilon - 1) + 1 + 99\epsilon )/100  &
135        & E_0 \geq 100\,E_{\rm th}~{\rm and}~\epsilon \geq \eta
136\end{array} \right.
137\end{equation}
138Here, $\beta = \log(E_0/100\,E_{\rm th})$ and
139$\eta = \beta/(99 + \beta)$.
140If resulting $E_2$ is less than 0.5 MeV, nothing is generated. \\ [5mm]
141%
142%
143{\bf Angular distribution} \\ [1mm]
144%
145The angular distribution is mainly determined by the energy ratio
146of the secondary to the projectile\,(i.e.
147the emission angle and probability of the occurrence
148increase as the energy ratio decreases).
149The emission angle of the secondary particle with respect to the incident direction
150is given by
151\begin{equation}\label{eq:angle}
152        \theta = - \log \bigl( 1 - \epsilon ( 1 - e^{-\pi\,\tau} ) \bigr)/
153        \tau~,
154\end{equation}
155where $\tau = E_0/5(E_0 + 1/2)$. \\
156%%
157%%
158\subsection{Sampling statistical weight}
159The kinematics of the secondary particle are determined randomly
160using the above formulae\,(\ref{eq:energy},\ref{eq:angle}).
161A statistical weight is calculated and assigned to each generated particle
162to reproduce a true inclusive spectrum in the event.
163The weight is given by
164\begin{equation}
165D2N = V10({\rm JP}) \times DW\,(E) \times DA\,(\theta) \times 
166V1\,(E,\theta,{\rm JP}),
167\end{equation}
168%%
169where \\
170$\bullet~V10$ is the statistical weight for the production rate
171based on neutral pion production\,($V10 = 1$).
172\begin{equation}
173V10 = \left\{
174\begin{array}{ll}
1752.0\,(2.5) & {\rm nucleon~production\,(the~case~of~gamma~projectile)} \\
1762.1        & {\rm charged~pion/kaon~production} 
177\end{array} \right.
178\end{equation}\vspace*{2mm}\\
179%%
180%%
181$\bullet$~DW and DA are dominantly determined by the secondary energy and
182emission angle, individually. \\ [2mm]
183%%
184%%
185$\bullet$~V1 is a true double-differential production cross-section (divided by the total
186inelastic cross-section)~\cite{MARS98}, calculated in {\it G4Mars5GeV::D2N2}
187according to the projectile type and energy, target atomic mass, and simulated secondary
188energy, emission angle and particle type. \\
189
190\section{Status of this document}
19111.06.2002 created by N. Kanaya. \\
19220.06.2002 modified by N.V.Mokhov. \\
193
194
195\begin{latexonly}
196
197\begin{thebibliography}{599}
198\bibitem{MARS98} N.V.~Mokhov, {\it The MARS Code System User's Guide, Version 13(98)},
199                 Fermilab-FN-628.
200
201\bibitem{MARSWWW} {\it http://www-ap.fnal.gov/MARS/}
202\end{thebibliography}
203
204\end{latexonly}
205
206\begin{htmlonly}
207
208\section{Bibliography}
209
210\begin{enumerate}
211\item N.V.~Mokhov, {\it The MARS Code System User's Guide, Version 13(98)},
212                 Fermilab-FN-628.
213
214\item {\it http://www-ap.fnal.gov/MARS/}
215\end{enumerate}
216
217\end{htmlonly}
218
Note: See TracBrowser for help on using the repository browser.