source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/hadronic/radioactive/radDecay.tex @ 1344

Last change on this file since 1344 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 5.6 KB
Line 
1\chapter{Radioactive Decay} 
2
3\section{The Radioactive Decay Module} 
4$G4RadioactiveDecay$ and associated classes are used to simulate the
5decay of radioactive nuclei by $\alpha$, $\beta^{+}$, and $\beta^{-}$ emission
6and by electron capture (EC).  The simulation model is empirical and
7data-driven, and uses the Evaluated Nuclear Structure Data File
8(ENSDF)~\cite{rdk.ENSDF} for information on:
9
10{\noindent \rm{}}
11
12%\check
13{\noindent \rm{}\LARGE$\cdot $\normalsize \indent nuclear half-lives,}
14
15%\check
16{\noindent \rm{}\LARGE$\cdot $\normalsize \indent
17nuclear level structure for the parent or daughter nuclide,}
18
19%\check
20{\noindent \rm{}\LARGE$\cdot $\normalsize \indent
21decay branching ratios, and}
22
23%\check
24{\noindent \rm{}\LARGE$\cdot $\normalsize \indent
25the energy of the decay process.}
26
27%\check
28{\noindent \rm{}}
29
30If the daughter of a nuclear decay is an excited isomer, its prompt nuclear
31de-excitation is treated using the $G4PhotoEvaporation$ 
32class~\cite{rdk.photevap}.
33
34\section{Sampling}
35Sampling of the $\beta$-spectrum, which includes the coordinated energies and
36momenta of the $\beta^{\pm}$, $\nu$, or $\bar{\nu}$ and residual nucleus, is
37performed either from histogrammed data, or through a three-body decay
38algorithm. In the latter case, the effect of the Coulomb barrier on the
39probability of $\beta^{\pm}$-emission can also be taken into account using the
40Fermi function:
41
42\begin{equation}
43F(E_0)=\frac {\gamma} {1-e^{-\gamma}}
44\left \lgroup {\frac {Z^2(E_0 + 1)^2} {137^2} + \frac {E_0 ^2+2E_0} {4}} \right \rgroup ^
45{\sqrt {1 - \frac {Z^2} {137^2}} - 1} .
46\end{equation}
47Here $E_0$ is the energy of the $\beta$-particle given as a fraction of the
48end-point energy, $Z$ is the atomic number of the nucleus, and $\gamma$ is
49given by the expression:
50\par
51
52\begin{equation}
53\gamma = \frac {2\pi Z} {137} \frac {1+E_0} {\sqrt {E_0 ^2 + 2E_0}} .
54\end{equation}
55
56Due to the level of imprecision of the rest-mass energy of the nuclei generated
57by $G4IonTable::GetNucleusMass$, the mass of the parent nucleus is
58modified to a minor extent just before performing the two- or three-body decay
59so that the $Q$ for the transition process equals that identified in the ENSDF
60data.
61
62\subsection{Biasing Methods}
63By default, sampling of the times of radioactive decay and branching ratios is
64done according to standard, analogue Monte Carlo modeling. The user may switch
65on one or more of the following variance reduction schemes, which can provide
66significant improvement in the modelling efficiency:
67
681. The decays can be biased to occur more frequently at certain times, for
69example, corresponding to times when measurements are taken in a real
70experiment. The statistical weights of the daughter nuclides are reduced
71according to the probability of survival to the time of the event, $t$, which
72is determined from the decay rate. The decay rate of the $n^{th}$ nuclide in a
73decay chain is given by the recursive formulae:
74\par
75
76%\check
77\begin{equation}
78R_n (t) = \sum \limits_{i=1} \limits^{n-1} A_{n:i}f(t,\tau_i) +
79A_{n:n}f(t,\tau_n)
80\end{equation}
81
82%\check
83{\noindent \rm{}where:}
84\par
85
86%\check
87\begin{equation}
88\label{rdk.eq4}
89A_{n:i} = \frac {\tau_i} {\tau_i-\tau_n} A_{n:i} \quad \forall i<n
90\end{equation}
91\begin{equation}
92A_{n:n} = -\sum \limits_{i=1} \limits^{n-1} \frac{\tau_n} {\tau_i-\tau_n} A_{n:i} - y_n
93\end{equation}
94\begin{equation}
95\label{rdk.eq6}
96f(t,\tau_i)= \frac {e^{-\frac{t}{\tau_i}}} {\tau_i} \int \limits_{-\inf} \limits^t F(t')e^{\frac{t'}{\tau_i}}dt' .
97\end{equation}
98The values $\tau_i$ are the mean life-times for the nuclei, $y_i$ is the
99yield of the $i^{th}$ nucleus, and $F(t)$ is a function identifying the time
100profile of the source.  The above expression for decay rate is simplified,
101since it assumes that the $i^{th}$ nucleus undergoes 100\% of the decays to the
102$(i+1)^{th}$ nucleus.  Similar expressions which allow for branching and
103merging of different decay chains can be found in Ref.~\cite{rdk.Tru96}.
104
105A consequence of the form of equations \ref{rdk.eq4} and \ref{rdk.eq6} is that
106the user may provide a source time profile so that each decay produced as a
107result of a simulated source particle incident at time $t=0$ is convolved over
108the source time profile to derive the actual decay rate for that source
109function.
110
111This form of variance reduction is only appropriate if the radionuclei can be
112considered to be at rest with respect to the geometry when decay occurs.
113
1142. For a given decay mode ($\alpha$, $\beta^++EC$, or $\beta^-$) the branching
115ratios to the daughter nuclide can be sampled with equal probability, so that
116some low probability branches which may have a disproportionately greater
117effect on the measurement are sampled with increased probability.
118
1193. Each parent nuclide can be split into a user-defined number of nuclides
120(of proportionally lower statistical weight) prior to treating decay in order t
121o increase the sampling of the effects of the daughter products.
122
123\section{Status of this document}
124
12500.00.00 created by ? \\
12621.11.03 bibliography added, minor re-wording by D.H. Wright \\
127
128
129\begin{latexonly}
130\begin{thebibliography}{99}
131\bibitem{rdk.ENSDF} J. Tuli, {\it "Evaluated Nuclear Structure Data File,"} 
132BNL-NCS-51655-Rev87, 1987.
133\bibitem{rdk.photevap} Chapter 25, Geant4 Physics Reference Manual.
134\bibitem{rdk.Tru96} P.R. Truscott, PhD Thesis, University of London, 1996.
135\end{thebibliography}
136\end{latexonly}
137
138
139\begin{htmlonly}
140\section{Bibliography}
141\begin{enumerate}
142\item{rdk.ENSDF} J. Tuli, {\it "Evaluated Nuclear Structure Data File,"} 
143BNL-NCS-51655-Rev87, 1987.
144\item{rdk.photevap} Chapter 25, Geant4 Physics Reference Manual.
145\item{rdk.Tru96} P.R. Truscott, PhD Thesis, University of London, 1996.
146\end{enumerate}
147\end{htmlonly}
Note: See TracBrowser for help on using the repository browser.