\subsection {Pion absorption at rest} The absorption of stopped negative pions in nuclei is interpreted \cite{Gadioli}, \cite{Chiang}, \cite{Ashery}, \cite{Weyer} as starting with the absorption of the pion by two or more correlated nucleons; the total energy of the pion is transferred to the absorbing nucleons, which then may leave the nucleus directly, or undergo final-state interactions with the residual nucleus. The remaining nucleus de-excites by evaporation of low energetic particles. G4PiMinusAbsorptionAtRest generates the primary absorption component of the process through the parameterisation of existing experimental data; the primary absorption component is handled by class G4PiMinusStopAbsorption. In the current implementation only absorption on a nucleon pair is considered, while contributions from absorption on nucleon clusters are neglected; this approximation is supported by experimental results \cite{Gadioli}, \cite{Machner2} showing that it is the dominating contribution. Several features of stopped pion absorption are known from experimental measurements on various materials \cite{Hartmann}, \cite{Madley}, \cite{Schleputz}, \cite{Orth}, \cite{Pruys}, \cite{Heusi}, \cite{Isaak}, \cite{Isaak-ang}: \begin{itemize} \item the average number of nucleons emitted, as resulting from the primary absorption process; \item the ratio of nn vs np as nucleon pairs involved in the absorption process; \item the energy spectrum of the resulting nucleons emitted and their opening angle distribution. \end{itemize} The corresponding final state products and related distributions are generated according to a parameterisation of the available experimental measurements listed above. The dependence on the material is handled by a strategy pattern: the features pertaining to material for which experimental data are available are treated in G4PiMinusStopX classes (where X represents an element), inheriting from G4StopMaterial base class. In case of absorption on an element for which experimental data are not available, the experimental distributions for the elements closest in Z are used. The excitation energy of the residual nucleus is calculated by difference between the initial energy and the energy of the final state products of the primary absorption process. Another strategy handles the nucleus deexcitation; the current default implementation consists in handling the deexcitatoin component of the process through the evaporation model described elsewhere in this Manual. \begin{latexonly} \begin{thebibliography}{999} \bibitem{Gadioli} E. Gadioli and E. Gadioli Erba {\em Phys. Rev. C 36} 741 (1987) \bibitem{Chiang} H.C. Chiang and J. Hufner {\em Nucl. Phys. A352} 442 (1981) \bibitem{Ashery} D. Ashery and J. P. Schiffer {\em Ann. Rev. Nucl. Part. Sci. 36} 207 (1986) \bibitem{Weyer} H. J. Weyer {\em Phys. Rep. 195} 295 (1990) \bibitem{Hartmann} R. Hartmann et al., {\em Nucl. Phys. A300} 345 (1978) \bibitem{Madley} R. Madley et al., {\em Phys. Rev. C 25} 3050 (1982) \bibitem{Schleputz} F. W. Schleputz et al., {\em Phys. Rev. C 19} 135 (1979) \bibitem{Orth} C.J. Orth et al., {\em Phys. Rev. C 21} 2524 (1980) \bibitem{Pruys} H.S. Pruys et al., {\em Nucl. Phys. A316} 365 (1979) \bibitem{Heusi} P. Heusi et al., {\em Nucl. Phys. A407} 429 (1983) \bibitem{Isaak} H.P. Isaak et al., {\em Nucl. Phys. A392} 368 (1983) \bibitem{Isaak-ang} H.P. Isaak et al., {\em Helvetica Physica Acta 55} 477 (1982) \bibitem{Machner2} H. Machner {\em Nucl. Phys. A395} 457 (1983) \end{thebibliography} \end{latexonly} \begin{htmlonly} \subsection{Bibliography} \begin{enumerate} \item E. Gadioli and E. Gadioli Erba {\em Phys. Rev. C 36} 741 (1987) \item H.C. Chiang and J. Hufner {\em Nucl. Phys. A352} 442 (1981) \item D. Ashery and J. P. Schiffer {\em Ann. Rev. Nucl. Part. Sci. 36} 207 (1986) \item H. J. Weyer {\em Phys. Rep. 195} 295 (1990) \item R. Hartmann et al., {\em Nucl. Phys. A300} 345 (1978) \item R. Madley et al., {\em Phys. Rev. C 25} 3050 (1982) \item F. W. Schleputz et al., {\em Phys. Rev. C 19} 135 (1979) \item C.J. Orth et al., {\em Phys. Rev. C 21} 2524 (1980) \item H.S. Pruys et al., {\em Nucl. Phys. A316} 365 (1979) \item P. Heusi et al., {\em Nucl. Phys. A407} 429 (1983) \item H.P. Isaak et al., {\em Nucl. Phys. A392} 368 (1983) \item H.P. Isaak et al., {\em Helvetica Physica Acta 55} 477 (1982) \item H. Machner {\em Nucl. Phys. A395} 457 (1983) \end{enumerate} \end{htmlonly}