source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/hadronic/stopping/piabs.tex @ 1344

Last change on this file since 1344 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 4.4 KB
Line 
1\subsection {Pion absorption at rest}
2The absorption of stopped negative pions in nuclei is interpreted
3\cite{Gadioli}, \cite{Chiang}, \cite{Ashery}, \cite{Weyer}
4as starting with the absorption of the pion by two or
5more correlated nucleons; the total energy of the pion is transferred to
6the absorbing nucleons, which then may leave the nucleus directly, or
7undergo final-state interactions with the residual nucleus. The remaining
8nucleus de-excites by evaporation of low energetic particles.
9
10G4PiMinusAbsorptionAtRest generates the primary absorption component of
11the process through
12the parameterisation of existing experimental data;
13the primary absorption component is handled by class G4PiMinusStopAbsorption.
14In the current implementation only absorption on a nucleon pair is considered,
15while contributions from absorption on nucleon clusters are neglected;
16this approximation is supported by experimental
17results
18\cite{Gadioli}, \cite{Machner2}
19showing that it is the dominating contribution.
20
21Several features of stopped pion absorption are known from experimental
22measurements on various materials \cite{Hartmann}, \cite{Madley},
23\cite{Schleputz}, \cite{Orth},
24\cite{Pruys}, \cite{Heusi}, \cite{Isaak}, \cite{Isaak-ang}:
25\begin{itemize}
26\item the average number of nucleons emitted, as resulting from the
27primary absorption process;
28\item the ratio of nn vs np as nucleon pairs involved in the absorption
29process;
30\item the energy spectrum of the resulting nucleons emitted and their
31opening angle distribution.
32\end{itemize}
33The corresponding final state products and related distributions are
34generated according to a parameterisation
35of the available experimental measurements listed above. The dependence on
36the material is handled by a strategy pattern:
37the features pertaining to material for which experimental data are available
38are treated in G4PiMinusStopX classes (where X represents an element),
39inheriting from G4StopMaterial base class. In case of absorption on an element
40for which experimental data are not available, the experimental distributions
41for the elements closest in Z are used.
42
43The excitation energy of the residual nucleus is calculated by difference
44between the initial energy and the energy of the final state products of
45the primary absorption process.
46
47Another strategy handles the nucleus deexcitation; the current default
48implementation consists in handling the deexcitatoin component of the process
49through the evaporation model described elsewhere in this Manual.
50
51\begin{latexonly}
52
53\begin{thebibliography}{999}
54
55\bibitem{Gadioli} E. Gadioli and E. Gadioli Erba
56  {\em Phys. Rev. C 36} 741 (1987)
57
58\bibitem{Chiang} H.C. Chiang and J. Hufner
59  {\em Nucl. Phys. A352} 442 (1981)
60
61\bibitem{Ashery} D. Ashery and J. P. Schiffer
62  {\em Ann. Rev. Nucl. Part. Sci. 36} 207 (1986)
63
64\bibitem{Weyer} H. J. Weyer
65  {\em Phys. Rep. 195} 295 (1990)
66
67\bibitem{Hartmann} R. Hartmann et al.,
68  {\em Nucl. Phys. A300} 345 (1978)
69
70\bibitem{Madley} R. Madley et al.,
71  {\em Phys. Rev. C 25} 3050 (1982)
72
73\bibitem{Schleputz} F. W. Schleputz et al.,
74  {\em Phys. Rev. C 19} 135 (1979)
75
76\bibitem{Orth} C.J. Orth et al.,
77  {\em Phys. Rev. C 21} 2524 (1980)
78
79\bibitem{Pruys} H.S. Pruys et al.,
80  {\em Nucl. Phys. A316} 365 (1979)
81
82\bibitem{Heusi} P. Heusi et al.,
83  {\em Nucl. Phys. A407} 429 (1983)
84
85\bibitem{Isaak} H.P. Isaak et al.,
86  {\em Nucl. Phys. A392} 368 (1983)
87
88\bibitem{Isaak-ang} H.P. Isaak et al.,
89  {\em Helvetica Physica Acta 55} 477 (1982)
90
91\bibitem{Machner2}  H. Machner
92  {\em Nucl. Phys. A395} 457 (1983)
93
94\end{thebibliography}
95
96\end{latexonly}
97
98\begin{htmlonly}
99
100\subsection{Bibliography}
101
102\begin{enumerate}
103\item E. Gadioli and E. Gadioli Erba
104  {\em Phys. Rev. C 36} 741 (1987)
105
106\item H.C. Chiang and J. Hufner
107  {\em Nucl. Phys. A352} 442 (1981)
108
109\item D. Ashery and J. P. Schiffer
110  {\em Ann. Rev. Nucl. Part. Sci. 36} 207 (1986)
111
112\item H. J. Weyer
113  {\em Phys. Rep. 195} 295 (1990)
114
115\item R. Hartmann et al.,
116  {\em Nucl. Phys. A300} 345 (1978)
117
118\item R. Madley et al.,
119  {\em Phys. Rev. C 25} 3050 (1982)
120
121\item F. W. Schleputz et al.,
122  {\em Phys. Rev. C 19} 135 (1979)
123
124\item C.J. Orth et al.,
125  {\em Phys. Rev. C 21} 2524 (1980)
126
127\item H.S. Pruys et al.,
128  {\em Nucl. Phys. A316} 365 (1979)
129
130\item P. Heusi et al.,
131  {\em Nucl. Phys. A407} 429 (1983)
132
133\item H.P. Isaak et al.,
134  {\em Nucl. Phys. A392} 368 (1983)
135
136\item H.P. Isaak et al.,
137  {\em Helvetica Physica Acta 55} 477 (1982)
138
139\item H. Machner
140  {\em Nucl. Phys. A395} 457 (1983)
141
142\end{enumerate}
143
144\end{htmlonly}
145
Note: See TracBrowser for help on using the repository browser.