source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/hadronic/theory_driven/BinaryCascade/inclusive.tex @ 1229

Last change on this file since 1229 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 5.2 KB
Line 
1%\subsection{Inclusive cross-sections \editor{Johannes Peter}}
2Experimental data are used in the calculation of the total, inelastic and
3elastic cross-section wherever available.
4\subsubsection{hadron-nucleon scattering}
5For the case of proton-proton(pp) and proton-neutron(pn) collisions, as well as
6$\pi^=$ and $\pi^-$ nucleon collisions, experimental
7data are readily available as collected by the Particle Data Group (PDG) for both
8elastic and inelastic collisions. We use a tabulation based on a sub-set of
9these data for $\sqrt{S}$ below 3~GeV. For higher energies, parametrizations from
10the CERN-HERA collection are included.
11
12% As an example, FixME: An example plot.
13%Figure \ref{np} shows a
14%comparison of the {\sc Geant4} scattering cross-sections with data from the
15%PDG\cite{PDG2002}.
16\subsection{Channel cross-sections}
17A large fraction of the cross-section in individual channels involving meson
18nucleon scattering can be modeled as resonance excitation in the s-channel.
19This kind of interactions show a resonance structure in the energy dependency of
20the cross-section, and can be modeled using the Breit-Wigner function
21
22$$\sigma_{res}(\sqrt{s}) = \sum_{FS}{}{2J+1\over (2S_1+1)(2S_2+1)}
23{\pi\over k^2}{\Gamma_IS\Gamma_FS\over (\sqrt{s}-M_R)^2+\Gamma/4},$$
24
25Where $S1$ and $S2$ are the spins of the two fusing particles, $J$ is the spin
26of the resonance, $\sqrt(s)$ the energy in the center of mass system, $k$ the
27momentum of the fusing particles in the center of mass system, $\Gamma_IS$ and
28$\Gamma)FS$ the partial width of the resonance for the initial and final state
29respectively. $M_R$ is the nominal mass of the resonance.
30
31The initial states included in the model are pion and kaon nucleon
32scattering. The product
33resonances taken into account are the Delta resonances with masses 1232, 1600,
341620, 1700, 1900, 1905, 1910, 1920, 1930, and 1950~MeV, the excited nucleons with
35masses of 1440, 1520, 1535, 1650, 1675, 1680, 1700, 1710, 1720, 1900, 1990,
362090, 2190, 2220, and 2250~MeV, the Lambda, and its excited states at 1520,
371600, 1670, 1690, 1800, 1810, 1820, 1830, 1890, 2100, and 2110~MeV, and the
38Sigma and its excited states at 1660, 1670, 1750, 1775, 1915, 1940, and
392030~MeV.
40
41% FixME: An example plot.
42
43\subsection{Mass dependent resonance width and partial width}
44During the cascading, the resonances produced are assigned reall masses, with
45values distributed according to the production cross-section described above.
46The concrete (rather than nominal) masses of these resonances may be small
47compared to the PDG value, and this implies that some channels may not be open
48for decay. In general it means, that the partial and total width will depend
49on the concrete mass of the resonance.  We are using the
50UrQMD\cite{UrQMD1.BC}\cite{SoH92} approach for calculating these actual width,
51\begin{equation}
52\Gamma_{R\rightarrow 12}(M) =
53(1+r){\Gamma_{R\rightarrow 12}(M_R)\over p(M_R)^{(2l+1)}}{M_R\over M}
54{p(M)^{(2l+1)}\over 1+r(p(M)/p(M_R))^{2l}}.
55\label{width}
56\end{equation}
57Here $M_R$ is the nominal mass of the resonance, $M$ the actual mass, $p$ is
58the momentum in the center of mass system of the particles, $L$ the angular
59momentum of the final state, and r=0.2.
60
61\subsection{Resonance production cross-section in the t-channel}
62In resonance production in the t-channel, single and double resonance
63excitation in nucleon-nucleon collisions are taken into account.  The
64resonance production cross-sections are as much as possible based on
65parametrizations of experimental data\cite{res.BC} for proton proton
66scattering.  The basic formula used is motivated from the form of the
67exclusive production cross-section of the $\Delta_{1232}$ in proton proton
68collisions:
69
70$$\sigma_{AB} = 2\alpha_{AB}\beta_{AB}{\sqrt{s}-\sqrt{s_0}
71\over (\sqrt{s}-\sqrt{s_0})^2+\beta_{AB}^2}
72\left ( {\sqrt{s0}+\beta_{AB}\over \sqrt{s}}\right )^{\gamma_{AB}} $$
73
74The parameters of the description for the various channels
75are given in table\ref{Parameters}. For all other channels, the
76parametrizations were derived from these by adjusting the threshold
77behavior.
78\begin{table*}[hbt]
79\begin{center}
80\begin{tabular}{|c||c|c|c|c|c|c|c|}\hline
81Reaction & $\alpha$ & $\beta$ & $\gamma$ \\ \hline \hline
82$\rm pp\rightarrow p\Delta_{1232}$ & 25~mbarn & 0.4~GeV & 3  \\ \hline 
83$\rm pp\rightarrow \Delta_{1232}\Delta_{1232}$ & 1.5~mbarn & 1~GeV & 1  \\ \hline 
84$\rm pp\rightarrow pp^{*}$    & 0.55~mbarn & 1~GeV & 1 \\ \hline 
85$\rm pp\rightarrow p\Delta_{*}   $ & 0.4~mbarn &  1~GeV & 1  \\ \hline 
86$\rm pp\rightarrow \Delta_{1232}\Delta^{*}$  & 0.35~mbarn & 1~GeV & 1 \\ \hline
87$\rm pp\rightarrow \Delta_{1232}N^{*}$  & 0.55~mbarn & 1~GeV & 1 \\ \hline
88\end{tabular}
89\caption{\label{Parameters}
90Values of the parameters of the cross-section formula for
91the individual channels.
92}
93\end{center}
94\end{table*}
95
96% FiXME: The $\Delta_{1232}$ and omega production as examples.
97
98The reminder of the cross-section are
99derived from these, applying detailed balance. Iso-spin invariance
100is assumed. The formalism used to apply detailed balance is
101\begin{equation}
102\sigma(cd\rightarrow ab) =
103\sum_{J,M}{}{\left < j_cm_cj_dm_d\parallel JM\right >^2
104\over \left < j_am_aj_bm_b\parallel JM\right >^2}  \\
105 {(2S_a+1)(2S_b+1)\over (2S_c+1)(2S_d+1)}\\
106 {\left< p_{ab}^2\right> \over \left< p_{cd}^2\right> }\sigma(ab\rightarrow cd)
107\end{equation}
108
Note: See TracBrowser for help on using the repository browser.