source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/hadronic/theory_driven/Cascade/Cascade.tex

Last change on this file was 1211, checked in by garnier, 15 years ago

CVS update

File size: 21.6 KB
Line 
1\chapter{Bertini Intranuclear Cascade Model in {\sc Geant4} }
2
3\section{Introduction} 
4This model is based on a re-engineering of the INUCL code and
5includes the Bertini intra-nuclear cascade model with excitons, a
6pre-equilibrium model, a nucleus explosion model, a fission model, and an
7evaporation model.  Intermediate energy nuclear reactions from 100~MeV to
85~GeV are treated for protons, neutrons, pions, photons and nuclear
9isotopes.  We present an overview of the models, review results achieved
10from simulations and make comparisons with experimental data.
11
12The intranuclear cascade model (INC) was was first proposed by Serber in
131947 \cite{serber47}.  He noticed that in particle-nuclear collisions the
14deBroglie wavelength of the incident particle is comparable (or shorter) than
15the average intra-nucleon distance.  Hence, a description of interactions
16in terms of particle-particle collisions is justified.
17
18The INC has been used succesfully in Monte Carlo simulations at intermediate
19energies since Goldberger made the first hand-calculations in
201947 \cite{goldberger48}.  The first computer simulations were done by
21Metropolis et al. in 1958 \cite{metropolis58}. Standard methods in INC
22implementations were developed when Bertini published his results in
231968 \cite{bertini68}.  An important addition to INC was the exciton model
24introduced by Griffin in 1966 \cite{griffin66}.
25
26The current presentation describes the implementation of the Bertini INC
27model within the {\sc Geant4} hadronic physics
28framework \cite{geant4collaboration03}.  This framework is flexible and
29allows for the modular implementation of various kinds of hadronic
30interactions.  It is based on the concepts of physics processes and models. 
31While the process is a general concept, models may be restricted according
32to process type, material, element and energy range.  Several models can be
33utilized by one process class; for instance, a process class for inelastic
34collisions can use a different model for each energy range.
35
36The process classes use model classes to determine the secondaries produced
37in the interaction and to calculate the momenta of the particles.  Here we
38present a collection of such models which describe a medium-energy
39intranuclear cascade.
40
41\section{The Geant4 Cascade Model}
42
43Inelastic particle-nucleus collisions are characterized by both fast and slow
44components.  The fast ($10^{-23} - 10^{-22} s$) intra-nuclear cascade
45results in a highly excited nucleus which may decay by fission or
46pre-equilibrium emission. The slower ($10^{-18} - 10^{-16} s$) compound
47nucleus phase follows with evaporation.  A Boltzmann equation must be solved
48to treat the collision process in detail.
49 
50The intranuclear cascade (INC) model developed by
51Bertini \cite{bertini68, bertini71} solves the Boltzmann equation on
52average.  This model has been implemented in several codes such as
53HETC \cite{alsmiller90}.  Our model, which is based on a re-engineering of
54the INUCL code  \cite{titarenko99a}, includes the Bertini intranuclear cascade
55model with excitons, a pre-equilibrium model, a simple nucleus explosion
56model, a fission model, and an evaporation model.
57
58The target nucleus is modeled as a three-region approximation to the
59continuously changing density distribution of nuclear matter within nuclei.
60The cascade begins when the incident particle strikes a nucleon in the
61target nucleus and produces secondaries.  The secondaries may in turn
62interact with other nucleons or be absorbed.  The cascade ends when all
63particles, which are kinematically able to do so, escape the nucleus.
64At that point energy conservation is checked.  Relativistic kinematics is
65applied throughout the cascade. 
66
67\subsection{Model Limits}
68
69The model is valid for incident protons, neutrons and pions.  Particles
70treated in the model include protons, neutrons, pions, photons and nuclear
71isotopes.  All types of targets are allowed.
72
73The necessary condition of validity of the INC model is
74$\lambda_{B} / v << \tau_{c} << \Delta t$, where $\delta_{B}$ is the deBroglie
75wavelenth of the nucleons, $v$ is the average relative velocity between two
76nucleons and $\Delta t$ is the time interval between collisions.
77At energies below $200 MeV$, this condition is no longer strictly valid,
78and a pre-quilibrium model must be invoked.  At energies greater than
79$\approx$ 10 GeV) the INC picture breaks down.  This model has been tested
80against experimental data at incident kinetic energies between 100~MeV and
815~GeV.
82
83\subsection{Intranuclear Cascade Model}
84
85The basic steps of the INC model are summarized as follows:
86
87\begin{enumerate}
88\item the space point at which the incident particle enters the nucleus is
89selected uniformly over the projected area of the nucleus,
90\item the total particle-particle cross sections and region-depenent nucleon
91densities are used to select a path length for the projectile,
92\item the momentum of the struck nucleon, the type of reaction and the
93four-momenta of the reaction products are determined, and
94\item the exciton model is updated as the cascade proceeds.
95\item If the Pauli exclusion principle allows and
96$E_{particle} > E_{cutoff}$ = 2~MeV, step (2) is performed to transport the
97products.
98\end{enumerate}
99
100After the intra-nuclear cascade, the residual excitation energy of the
101resulting nucleus is used as input for non-equilibrium model.
102
103\subsection{Nuclear Model}
104
105Some of the basic features of the nuclear model are:
106
107\begin{itemize}
108\item the nucleons are assumed to have a Fermi gas momentum distribution.
109The Fermi energy is calculated in a local density approximation i.e. the
110Fermi energy is made radius-dependent with Fermi momentum
111$p_{F}(r) = (\frac{3 \pi^2 \rho(r)}{2})^\frac{1}{3}$.
112%\item Nuclear density effects are re-calculated after each step,
113\item Nucleon binding energies (BE) are calculated using the mass formula.
114A parameterization of the nuclear binding energy uses a combination of the
115Kummel mass formula and experimental data.  Also, the asymptotic high
116temperature mass formula is used if it is impossible to use experimental data.
117\end{itemize}
118
119\subsubsection{Initialization}
120The initialization phase fixes the nuclear radius and momentum according to
121the Fermi gas model.
122
123If the target is hydrogen (A = 1) a direct particle-particle collision is
124performed, and no nuclear modeling is required.
125
126If $1 < A < 4$, a nuclear model consisting of one layer with a radius of
1278.0 fm is created.
128
129For $4 < A < 11$, the nuclear model is composed of three concentric spheres
130$i = \{1, 2, 3\}$ with radius
131$$r_{i}(\alpha_{i}) = \sqrt{C_{1}^{2} (1 - \frac{1}{A}) + 6.4} \sqrt{-log( \alpha_{i})}$$.
132
133Here $\alpha_{i} = \{0.01, 0.3, 0.7\}$ and $C_{1} = 3.3836 A^{1/3}$.
134
135If $A > 11$, a nuclear model with three concentric spheres is also used.  The
136sphere radius is now defined as
137\begin{equation}
138r_{i}(\alpha_{i}) =  C_{2} \log({\frac{1 + e^{- \frac{C_{1}}{C_{2}}}}{\alpha_{i}} - 1}) + C_{1} ,
139\end{equation}
140where $C_{2} = 1.7234$.
141
142The potential energy $V$ for nucleon $N$ is
143\begin{equation}
144V_{N} = \frac{p_{F}^2}{2 m_{N}} + BE_{N}(A, Z) ,
145\end{equation}
146where $p_f$ is the Fermi momentum and $BE$ is the binding energy.
147 
148The momentum distribution in each region follows the Fermi distribution with
149zero temperature.
150
151\begin{equation}
152 f(p) = c p ^2
153\end{equation}
154where
155
156\begin{equation}
157\int_0^{p_F} f(p) dp = n_{p} \rm{ or }  n_{n}
158\end{equation}
159where $n_p$ and $n_n$ are the number of protons or neutrons in the region.
160$P_f$ is the momentum corresponding to the Fermi energy
161
162\begin{equation}
163 E_f = \frac{p_F^2}{2 m_N} = \frac{\hbar^2}{2 m_N}(\frac{3 \pi^{2}}{v})^\frac{2}{3} ,
164\end{equation}
165which depends on the density $n/v$ of particles, and which is different for
166each particle and each region.
167
168\subsubsection{Pauli Exclusion Principle}
169The Pauli exclusion principle forbids interactions where the products would be
170in occupied states.  Following the assumption of a completely degenerate Fermi
171gas, the levels are filled from the lowest level.
172The minimum energy allowed for the products of a collision correspond to the
173lowest unfilled level of the system, which is the Fermi energy in the region.
174So in practice, the Pauli exclusion principle is taken into account by
175accepting only secondary nucleons which have $E_N > E_f$.
176
177
178\subsubsection{Cross Sections and Kinematics}
179
180Path lengths of nucleons in the nucleus are sampled according to the local
181density and the free $N-N$ cross sections.  Angles after the collision are
182sampled from experimental differential cross sections.
183%{\sc Geant4} cascade model uses tabulated cross-sections.
184Tabulated total reaction cross sections are calculated by Letaw's
185formulation \cite{letaw83, letaw93, pearlstein89}.
186%:::$45 A^0.7 (1+0.016 sin(5.3-2.63 log10(A)))^(1-0.62 exp(-E / 200) sin(10.9 E^(-0.28)))
187For $N-N$ cross sections the parameterizations are based on the experimental
188energy and isospin dependent data.
189The parameterization described in \cite{barashenkov72} is used.
190
191For pions the intra-nuclear cross sections are provided to treat elastic
192collisions and the following inelastic channels:
193$\pi^{-}$p $\rightarrow$ $\pi^{0}$n,
194$\pi^{0}$p $\rightarrow$ $\pi^{+}$n,
195$\pi^{0}$n $\rightarrow$ $\pi^{-}$p, and
196$\pi^+$n $\rightarrow$ $\pi^0$p.
197Multiple particle production is also implemented.
198
199The pion absorption channels are
200$\pi^{+}$nn $\rightarrow$ pn, $\pi^{+}$pn $\rightarrow$ pp,
201$\pi^{0}$nn $\rightarrow$ nn, $\pi^{0}$pn $\rightarrow$ pn,
202$\pi^{0}$pp $\rightarrow$ pp, $\pi^{-}$pn $\rightarrow$ nn , and
203$\pi^{-}$pp $\rightarrow$ pn.
204
205\subsection{Pre-equilibrium Model}
206
207The {\sc Geant4} cascade model implements the exciton model proposed by
208Griffin \cite{griffin66, griffin67}.  In this model, nucleon states are
209characterized by the number of excited particles and holes (the excitons).
210Intra-nuclear cascade collisions give rise to a sequence of states
211characterized by increasing exciton number, eventually leading to an
212equilibrated nucleus.  For a practical implementation of the exciton model
213we use parameters from \cite{ribansky73}, (level densities)
214and \cite{kalbach78} (matrix elements).
215
216In the exciton model the possible selection rules for particle-hole
217configurations in the source of the cascade are:
218$\Delta p = 0, \pm 1$  $\Delta h = 0, \pm 1$  $\Delta n = 0, \pm 2$,
219where $p$ is the number of particles, $h$ is number of holes and $n = p + h$ 
220is the number of excitons.
221
222The cascade pre-equilibrium model uses target excitation data and the 
223exciton configurations for neutrons and protons to produce non-equilibrium
224evaporation.  The angular distribution is isotropic in the rest frame of the
225exciton system.
226
227Parameterizations of the level density are tabulated as functions of $A$ and
228$Z$, and with high temperature behavior (the nuclear binding energy using
229the smooth liquid high energy formula).
230
231\subsection{Break-up models}
232
233Fermi break-up is allowed only in some extreme cases, i.e. for light nuclei
234($A < 12$ and  $3 (A - Z) < Z < 6$ ) and $E_{excitation} > 3 E_{binding}$.
235A simple explosion model decays the nucleus into neutrons and protons and
236decreases exotic evaporation processes.
237
238The fission model is phenomenological, using potential minimization. A binding
239energy paramerization is used and
240some features of the fission statistical model are incorporated \cite{fong69}.
241
242\subsection{Evaporation Model}
243
244A statistical theory for particle emission of the excited nucleus remaining
245after the intra-nuclear cascade was originally developed by
246Weisskopf \cite{weisskopf37}.  This model assumes complete energy
247equilibration before particle emission, and re-equilibration of excitation
248energies between successive evaporations.
249As a result the angular distribution of emitted particles is isotropic.
250
251The {\sc Geant4} evaporation model for the cascade implementation adapts the
252often-used computational method developed by
253Dostrowski \cite{dostrovsky59, dostrovsky60}.  The emission of particles is
254computed until the excitation energy falls below some specific cutoff.
255If a light nucleus is highly excited, the Fermi break-up model is executed.
256Also, fission is performed if that channel is open.  The main chain of
257evaporation is followed until $E_{excitation}$ falls below
258E$_{cutoff}$ = 0.1 MeV.  The evaporation model ends with an emission chain
259which is followed until $E_{excitation} < E^{\gamma}_{cutoff} = 10^{-15}$ MeV.
260
261An example of Bertini evaporation model in action is shown in Fig. \ref{models}.
262
263\begin{figure}
264
265%\includegraphics[angle=0,scale=1.0]{nFromSubModels.eps}
266\includegraphics[angle=0,scale=0.6]{hadronic/theory_driven/Cascade/nFromSubModels.eps}
267\caption{Secondary neutrons generated by Bertini INC with exitons and evaporation model.}
268\label{models}
269\end{figure}
270
271\section{Interfacing Bertini implementation}
272Typically Bertini models are used through physics lists, with 'BERT' in their name.
273User should consult these validated physics model collection to understand the inclusion mechanisms
274before using directly the actual Bertini cascade interfaces:
275
276\begin{description}
277\item[G4CascadeInterface] {\em All the Bertini cascade submodels} in integrated fashion, can be used collectively through this interface
278using method {\it Apply\-Yourself}. A {\sc Geant4} track ({\it G4Track}) and a nucleus ({\it G4Nucleus}) are given
279as parameters.
280\item[G4ElasticCascadeInterface] provides an access to elastic hadronic scattering. Particle treated are the same as in case for {\em G4CascadeInterface} but only elastic scattering is modeled.
281\item[G4PreCompoundCascadeInterface] provides an interface to INUCL intra nuclear cascade with exitons.
282Subsequent evaporation phase is {\em not} modeled.
283\item[G4InuclEvaporation] provides an interface to INUCL evaporation model.
284This interface with method {\em BreakItUp} inputs an exited nuclei {\em G4Fragment} to model evaporation phase.
285
286\end{description}
287
288%The cascade models were first tested in release {\sc Geant4 5.0} for energies
289%100~MeV -- 5~GeV.  Detailed comparisons with experimental data have been made
290%in the energy range 160 -- 800 MeV.
291
292\section{Status of this document}
293
29401.12.02 created by Aatos Heikkinen, Nikita Stepanov and Hans-Peter Wellisch \\
29514.06.05 grammar, spelling check and list of pion absorption channels
296         corrected by D.H. Wright \\
29730.05.07 New interfaces documented Aatos Heikkinen
298\begin{latexonly}
299
300\begin{thebibliography}{99}
301
302\bibitem{alsmiller90}
303  R.G. Alsmiller and F.S. Alsmiller and O.W. Hermann,
304  The high-energy transport code HETC88 and comparisons with experimental data,
305  Nuclear Instruments and Methods in Physics Research A 295,
306   (1990), 337--343,
307
308% [1] Barashenkov V.S., Toneev V.D. High Energy interactions of particles and nuclei with nuclei. Moscow, 1972
309%(in Russian, but there is an English translation))
310
311\bibitem{barashenkov72}
312 V.S. Barashenkov and V.D. Toneev,
313 High Energy interactions of particles and nuclei with nuclei (In russian),
314 (1972)
315
316\bibitem{bertini68}     
317 M. P. Guthrie, R. G. Alsmiller and H. W. Bertini,
318Nucl. Instr. Meth,
31966,
320 1968,
321 29.                             
322% \bibitem{bertini69}
323%  H.W.Bertini,
324%  Intranuclear-Cascade Calculation of the Secondary Nucleon Spectra from Nucleon-Nucleus
325%         Interactions in the Energy Range 340 to 2900 MeV and Comparisons with Experiment,
326% Phys. Rev.,
327%  188,
328%  1969,
329%  1711
330%
331\bibitem{bertini71}     
332H. W. Bertini and P. Guthrie,
333Results from Medium-Energy Intranuclear-Cascade Calculation,
334Nucl. Phys.A169,
335(1971).
336
337\bibitem{dostrovsky59}
338         I. Dostrovsky, Z. Zraenkel and G. Friedlander,
339         Monte carlo calculations of high-energy nuclear interactions. III. Application to low-lnergy calculations,
340         Physical Review,
341         1959,
342         116,
343         3,
344         683-702.
345
346\bibitem{dostrovsky60}
347         I. Dostrovsky and Z. Fraenkel and P. Rabinowitz,
348         Monte Carlo Calculations of Nuclear Evaporation Processes. V. Emission of Particles Heavier Than $^4He$,
349         Physical Review,
350         1960.
351
352\bibitem{fong69}
353 P. Fong,
354 Statistical Theory of Fission,
355 1969, Gordon and Breach, New York.
356
357\bibitem{geant4collaboration03}
358 Geant4 collaboration,
359 Geant4 general paper (to be published),
360Nuclear Instruments and Methods A,
361(2003).
362
363\bibitem{goldberger48} 
364 M. Goldberger,
365 The Interaction of High Energy Neutrons and Hevy Nuclei,
366Phys. Rev. 74,
367 (1948),
368 1269.
369 
370\bibitem{griffin66}     
371 J. J. Griffin,
372 Statistical Model of Intermediate Structure,
373Physical Review Letters 17, (1966), 478-481.
374
375\bibitem{griffin67}     
376 J. J. Griffin,
377 Statistical Model of Intermediate Structure,
378Physics Letters 24B, 1 (1967), 5-7.
379
380\bibitem{iljinov94}
381 A. S. Iljonov et al.,
382 Intermediate-Energy Nuclear Physics,
383 CRC Press 1994.
384
385\bibitem{kalbach78}     
386 C. Kalbach,
387 Exciton Number Dependence of the Griffin Model Two-Body Matrix Element,
388Z. Physik A 287, (1978), 319-322.
389
390\bibitem{letaw83}
391         J. R. Letaw et al.,
392         The Astrophysical Journal Supplements 51,
393         (1983),
394         271f.
395
396\bibitem{letaw93}
397         J. R. Letaw et al.,
398         The Astrophysical Journal 414,
399         1993,
400         601.
401
402\bibitem{metropolis58}
403         N. Metropolis, R. Bibins, M. Storm,
404         Monte Carlo Calculations on Intranuclear Cascades. I. Low-Energy Studies,
405         Physical Review 110,
406         (1958),
407         185ff.
408
409\bibitem{pearlstein89}
410         S. Pearlstein,
411         Medium-energy nuclear data libraries: a case study, neutron- and
412         proton-induced reactions in $^56$Fe,
413         The Astrophysical Journal 346,
414         (1989),
415         1049-1060.
416
417\bibitem{ribansky73}   
418 I. Ribansky et al.,
419 Pre-equilibrium decay and the exciton model,
420Nucl. Phys. A 205,
421 (1973),
422 545-560.
423
424\bibitem{serber47}     
425 R. Serber,
426 Nuclear Reactions at High Energies,
427Phys. Rev. 72,
428 (1947),
429 1114.
430
431\bibitem{titarenko99a}
432 Experimental and Computer Simulations Study of
433                  Radionuclide Production in Heavy Materials
434                  Irradiated by Intermediate Energy Protons,             
435 Yu. E. Titarenko et al.,
436nucl-ex/9908012,
437 (1999).
438
439\bibitem{weisskopf37}
440         V. Weisskopf,
441          Statistics and Nuclear Reactions,
442       Physical Review 52,
443           (1937),
444          295--302.
445         
446\end{thebibliography}
447
448\end{latexonly}
449
450\begin{htmlonly}
451
452\section{Bibliography}
453
454\begin{enumerate}
455\item
456  R.G. Alsmiller and F.S. Alsmiller and O.W. Hermann,
457  The high-energy transport code HETC88 and comparisons with experimental data,
458  Nuclear Instruments and Methods in Physics Research A 295,
459   (1990), 337--343,
460
461% [1] Barashenkov V.S., Toneev V.D. High Energy interactions of particles and nuclei with nuclei. Moscow, 1972
462%(in Russian, but there is an English translation))
463
464\item
465 V.S. Barashenkov and V.D. Toneev,
466 High Energy interactions of particles and nuclei with nuclei (In russian),
467 (1972)
468
469\item   
470 M. P. Guthrie, R. G. Alsmiller and H. W. Bertini,
471Nucl. Instr. Meth,
47266,
473 1968,
474 29.                             
475% \bibitem{bertini69}
476%  H.W.Bertini,
477%  Intranuclear-Cascade Calculation of the Secondary Nucleon Spectra from Nucleon-Nucleus
478%         Interactions in the Energy Range 340 to 2900 MeV and Comparisons with Experiment,
479% Phys. Rev.,
480%  188,
481%  1969,
482%  1711
483%
484\item     
485H. W. Bertini and P. Guthrie,
486Results from Medium-Energy Intranuclear-Cascade Calculation,
487Nucl. Phys.A169,
488(1971).
489
490\item
491         I. Dostrovsky, Z. Zraenkel and G. Friedlander,
492         Monte carlo calculations of high-energy nuclear interactions. III. Application to low-lnergy calculations,
493         Physical Review,
494         1959,
495         116,
496         3,
497         683-702.
498
499\item
500         I. Dostrovsky and Z. Fraenkel and P. Rabinowitz,
501         Monte Carlo Calculations of Nuclear Evaporation Processes. V. Emission of Particles Heavier Than $^4He$,
502         Physical Review,
503         1960.
504
505\item
506 P. Fong,
507 Statistical Theory of Fission,
508 1969, Gordon and Breach, New York.
509
510\item
511 Geant4 collaboration,
512 Geant4 general paper (to be published),
513Nuclear Instruments and Methods A,
514(2003).
515
516\item 
517 M. Goldberger,
518 The Interaction of High Energy Neutrons and Hevy Nuclei,
519Phys. Rev. 74,
520 (1948),
521 1269.
522 
523\item     
524 J. J. Griffin,
525 Statistical Model of Intermediate Structure,
526Physical Review Letters 17, (1966), 478-481.
527
528\item     
529 J. J. Griffin,
530 Statistical Model of Intermediate Structure,
531Physics Letters 24B, 1 (1967), 5-7.
532
533\item
534 A. S. Iljonov et al.,
535 Intermediate-Energy Nuclear Physics,
536 CRC Press 1994.
537
538\item     
539 C. Kalbach,
540 Exciton Number Dependence of the Griffin Model Two-Body Matrix Element,
541Z. Physik A 287, (1978), 319-322.
542
543\item
544         J. R. Letaw et al.,
545         The Astrophysical Journal Supplements 51,
546         (1983),
547         271f.
548
549\item
550         J. R. Letaw et al.,
551         The Astrophysical Journal 414,
552         1993,
553         601.
554
555\item
556         N. Metropolis, R. Bibins, M. Storm,
557         Monte Carlo Calculations on Intranuclear Cascades. I. Low-Energy Studies,
558         Physical Review 110,
559         (1958),
560         185ff.
561
562\item
563         S. Pearlstein,
564         Medium-energy nuclear data libraries: a case study, neutron- and
565         proton-induced reactions in $^56$Fe,
566         The Astrophysical Journal 346,
567         (1989),
568         1049-1060.
569
570\item   
571 I. Ribansky et al.,
572 Pre-equilibrium decay and the exciton model,
573Nucl. Phys. A 205,
574 (1973),
575 545-560.
576
577\item     
578 R. Serber,
579 Nuclear Reactions at High Energies,
580Phys. Rev. 72,
581 (1947),
582 1114.
583
584\item
585 Experimental and Computer Simulations Study of
586                  Radionuclide Production in Heavy Materials
587                  Irradiated by Intermediate Energy Protons,             
588 Yu. E. Titarenko et al.,
589nucl-ex/9908012,
590 (1999).
591
592\item
593         V. Weisskopf,
594          Statistics and Nuclear Reactions,
595       Physical Review 52,
596           (1937),
597          295--302.
598         
599\end{enumerate}
600
601\end{htmlonly}
602
603         
Note: See TracBrowser for help on using the repository browser.