source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/hadronic/theory_driven/ChiralInvariantPhaseSpace/CHIPS.tex @ 1211

Last change on this file since 1211 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 107.4 KB
Line 
1%\documentclass[12pt,a4paper,oneside]{book}
2%\usepackage[dvips]{graphicx}
3%\usepackage{html}
4%%% \usepackage[dvips]{epsfig}
5%\title{Physics Reference Manual}
6%\pagestyle{plain}
7%\begin{document}
8%{
9%\maketitle
10%\pagestyle {empty}
11%\setcounter{page}{-10}
12%\tableofcontents
13%\setcounter{page}{-0}
14%\pagestyle {empty}
15%}
16%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17
18\chapter{Chiral Invariant Phase Space Decay.}
19% \textheight 8.75in
20% \textwidth 6.5in
21% \parskip 1.45ex
22
23\newtheorem{theorem}{Theorem}
24\newtheorem{acknowledgement}[theorem]{Acknowledgement}
25\newtheorem{algorithm}[theorem]{Algorithm}
26\newtheorem{axiom}[theorem]{Axiom}
27\newtheorem{claim}[theorem]{Claim}
28\newtheorem{conclusion}[theorem]{Conclusion}
29\newtheorem{condition}[theorem]{Condition}
30\newtheorem{conjecture}[theorem]{Conjecture}
31\newtheorem{corollary}[theorem]{Corollary}
32\newtheorem{criterion}[theorem]{Criterion}
33\newtheorem{definition}[theorem]{Definition}
34\newtheorem{example}[theorem]{Example}
35\newtheorem{exercise}[theorem]{Exercise}
36\newtheorem{lemma}[theorem]{Lemma}
37\newtheorem{notation}[theorem]{Notation}
38\newtheorem{problem}[theorem]{Problem}
39\newtheorem{proposition}[theorem]{Proposition}
40\newtheorem{remark}[theorem]{Remark}
41\newtheorem{solution}[theorem]{Solution}
42\newtheorem{summary}[theorem]{Summary}
43
44% \title{Manual for the CHIPS event generator in GEANT4}
45%\author{M.V.Kossov}
46%\address{Mikhail.Kossov@itep.ru, Mikhail.Kossov@cern.ch, kossov@jlab.org,\\
47%kossov@post.kek.jp}
48% \date{\today}
49% \maketitle
50
51\section{Introduction}
52
53\noindent \qquad 
54The CHIPS computer code is a quark-level event generator for the
55fragmentation of hadronic systems into hadrons.  In contrast to other parton
56models \cite{Parton_Models} CHIPS is nonperturbative and
57three-dimensional. It is based on the Chiral Invariant Phase Space
58(ChIPS) model \cite{CHIPS1,CHIPS2,CHIPS3} which employs a
593D quark-level SU(3) approach. Thus Chiral Invariant Phase Space refers
60to the phase space of massless partons and hence only light (u, d, s)
61quarks can be considered. The c, b, and t quarks are not implemented
62in the model directly, while they can be created in the model as a
63result of the gluon-gluon or photo-gluon fusion. The main parameter of
64the CHIPS model is the critical temperature $T_c\approx 200~MeV$. The
65probability of finding a quark with energy $E$ drops with the energy
66approximately as $e^{-E/T}$, which is why the heavy flavors of quarks
67are suppressed in the Chiral Invariant Phase Space. The s quarks,
68which have masses less then the critical temperature, have an
69effective suppression factor in the model.
70
71The critical temperature $T_c$ defines the number of 3D partons in
72the hadronic system with total energy $W$. If masses of all partons
73are zero then the number of partons can be found from the equation
74$W^2=4T_c^2(n-1)n$. The mean squared total energy can be calculated
75for any ``parton'' mass (partons are usually massless). The
76corresponding formula can be found in \cite{hadronMasses}. In this
77treatment the masses of light hadrons are fitted better than by the
78chiral bag model of hadrons~\cite{Chiral_Bag} with the same number of
79parameters. In both models any hadron consists of a few quark-partons,
80but in the CHIPS model the critical temperature defines the mass of
81the hadron, consisting of $N$ quark-partons, while in the bag
82model the hadronic mass is defined by the balance between the
83quark-parton internal pressure (which according to the uncertainty
84principle increases when the radius of the ``bag'' decreases) and the
85external pressure ($B$) of the nonperturbative vacuum, which has
86negative energy density.
87
88In CHIPS the interactions between hadrons are defined by the Isgur
89quark-exchange diagrams, and the decay of excited hadronic
90systems in vacuum is treated as the fusion of quark-antiquark or
91quark-diquark partons. An important feature of the model is the
92homogeneous distribution of asymptotically free quark-partons over the
93invariant phase space, as applied to the fragmentation of various
94types of excited hadronic systems. In this sense the CHIPS model may
95be considered as a generalization of the well-known hadronic phase
96space distribution \cite{GENBOD} approach, but it generates not only
97angular and momentum distributions for a given set of hadrons, but
98also the multiplicity distributions for different kinds of hadrons,
99which is defined by the multistep energy dissipation (decay) process. 
100
101The CHIPS event generator may be applied to nucleon excitations,
102hadronic systems produced in $e^{+}e^{-}$ and $p\bar p$ annihilation,
103and high energy nuclear excitations, among others. Despite its quark
104nature, the nonperturbative CHIPS model can also be used successfully
105at very low energies. It is valid for photon and hadron projectiles
106and for hadron and nuclear targets. Exclusive event generation models
107multiple hadron production, conserving energy, momentum, and other
108quantum numbers. This generally results in a good description of
109particle multiplicities, inclusive spectra, and kinematic correlations
110in multihadron fragmentation processes. Thus, it is possible to use
111the CHIPS event generator in exclusive modeling of hadron cascades in
112materials.
113
114In the CHIPS model, the result of a hadronic or nuclear interaction is
115the creation of a quasmon which is essentially an intermediate state
116of excited hadronic matter.  When the interaction occurs in vacuum the
117quasmon can dissipate energy by radiating particles according to the
118quark fusion mechanism~\cite{CHIPS1} described in section \ref{annil}.
119When the interaction occurs in nuclear matter, the energy dissipation
120of a quasmon can be the result of quark exchange with surrounding
121nucleons or clusters of nucleons \cite{CHIPS2} (section \ref{picap}),
122in addition to the vacuum quark fusion mechanism.
123
124In this sense the CHIPS model can be a successful competitor of the
125cascade models, because it does not break the projectile, instead it
126captures it, creating a quasmon, and then decays the quasmon in
127nuclear matter. The perturbative mechanisms in deep inelastic
128scattering are in some sense similar to the cascade calculations,
129while the parton splitting functions are used instead of
130interactions. The nonperturbative CHIPS approach is making a ``short
131cut'' for the perturbative calculations too. Similar to the time-like
132$s=W^2$ evolution of the number of partons in the nonperturbative
133chiral phase space (mentioned above) the space-like $Q^2$ evolution of
134the number of partons is given by $N(Q^2)=n_V+\frac{1}{2\alpha_s(Q^2)}$,
135where $n_V$ is the number of valence quark-partons. The running
136$\alpha_s(Q^2)$ value is calculated in CHIPS as
137$\alpha_s(Q^2)=\frac{4\pi}{\beta_0ln(1+Q^2/T_c^2)}$, where
138$\beta_0^{n_f=3)=9}$. In other words, the critical temperature $T_c$
139plays the role of $\Lambda_QCD$ and still cuts out heavy flavors of
140quark-partons and high orders of the QCD calculation (NLO, NNLO,
141N$^3$LO, etc.), substituting for them the effective LO ``short cut''.
142This simple approximation of $\alpha_s$ fits all the present measurements
143of this value (Fig.~\ref{alphas}).
144It is very important that
145$\alpha_s$ is defined in CHIPS for any $Q^2$, and that the number of partons
146at $Q^2=0$ converges to the number of valence quarks.
147
148\begin{figure}
149% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/mommul.eps, height=3.5in, width=4.5in}}
150%  \resizebox{1.00\textwidth}{!}
151%{
152\includegraphics[angle=0,scale=0.6]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/alpha.eps}
153%\includegraphics[angle=0,scale=0.6]{plots/alpha.eps}
154%}
155\caption{The CHIPS fit of the $\alpha_s$ measurements.}
156\label{alphas}
157\end{figure}
158
159The effective $\alpha_s$ is defined for all $Q^2$, but at $Q^2=0$ it
160is infinite. In other words at $Q^2=0$ the number of the virtual
161interacting partons goes to infinity.  This means that on the boundary
162between perturbative and non-perturbative vacuums a virtual
163``thermostate'' of gluons with an effective temperature $T_c$
164exists. This ``virtual thermostate'' defines the phase space
165distribution of partons, and the ``thermalization'' can happen very
166quickly. On the other hand, the CHIPS nonperturbative approach can be used
167below $Q^2~=~1~GeV^2$. This was done for the neutrino-nuclear
168interactions  (section \ref{numunuc}).
169
170\section{Fundamental Concepts}
171
172The CHIPS model is an attempt to use a set of simple rules which govern
173microscopic quark-level behavior to model macroscopic hadronic systems with
174a large number of degrees of freedom. The invariant phase space distribution
175as a paradigm of thermalized chaos is applied to quarks, and simple
176kinematic mechanisms are used to model the hadronization of quarks into
177hadrons. Along with relativistic kinematics and the conservation of quantum
178numbers, the following concepts are used:
179
180\begin{itemize}
181\item {\bf Quasmon:} in the CHIPS model, a quasmon is any excited hadronic
182system; it can be viewed as a continuous spectrum of a generalized
183hadron.  At the constituent level, a quasmon may be thought of as a
184bubble of quark-parton plasma in which the quarks are massless and the
185quark-partons in the quasmon are homogeneously distributed over the
186invariant phase space.  It may also be considered as a bubble of the
187three-dimensional Feynman-Wilson \cite{Feynman-Wilson} parton gas. The
188traditional hadron is a particle defined by quantum numbers and a
189fixed mass or a mass with a width. The quark content of the hadron is
190a secondary concept constrained by the quantum numbers. The quasmon,
191however, is defined by its quark content and its mass, and the concept
192of a well defined particle with quantum numbers (a discrete spectrum)
193is of secondary importance. A given quasmon hadronic state with fixed
194mass and quark content can be considered as a superposition of
195traditional hadrons, with the quark content of the superimposed
196hadrons being the same as the quark content of the quasmon.
197
198\item {\bf Quark fusion:} the quark fusion hypothesis determines the rules
199of final state hadron production, with energy spectra reflecting the
200momentum distribution of the quarks in the system. Fusion occurs when a
201quark-parton in a quasmon joins with another quark-parton from the same
202quasmon and forms a new white hadron, which can be radiated. If a
203neighboring nucleon (or the nuclear cluster) is present, quark-partons
204may also be exchanged between the quasmon and the neighboring nucleon
205(cluster). The kinematic condition applied to these mechanisms is that
206the resulting hadrons are produced on their mass shells. The model
207assumes that the u, d and s quarks are effectively massless, which
208allows the integrals of the hadronization process to be done easily
209and the modeling decay algorithm to be accelerated. The quark mass is
210taken into account indirectly in the masses of outgoing hadrons. The
211type of the outgoing hadron is selected using combinatoric and
212kinematic factors consistent with conservation laws.  In the present
213version of CHIPS all mesons with three-digit PDG Monte Carlo codes
214\cite{CH.PDG} up to spin $4$, and all baryons with four-digit PDG
215codes up to spin $\frac{7}{2}$ are implemented.
216
217\item {\bf Critical temperature} the only non-kinematic concept of the model
218is the hypothesis of the critical temperature of the quasmon. This has a
21940-year history, starting with Ref.~\cite{Hagedorn} and is based on the
220experimental observation of regularities in the inclusive spectra of hadrons
221produced in different reactions at high energies.  Qualitatively, the
222hypothesis of a critical temperature assumes that the quark-gluon hadronic
223system (quasmon) cannot be heated above a certain temperature.  Adding more
224energy to the hadronic system increases only the number of constituent
225quark-partons while the temperature remains constant.  The critical
226temperature is the principal parameter of the model and is used to
227calculate the number of quark-partons in a quasmon.  In an infinite
228thermalized system, for example, the mean energy of partons is $2T$
229per particle, the same as for the dark body radiation. 
230
231\end{itemize}
232
233\section{Code Development}
234
235Because the CHIPS event generator was originally developed only for final
236state hadronic fragmentation, the initial interaction of projectiles with
237targets requires further development.  Hence, the first applications of
238CHIPS described interactions at rest, for which the interaction cross
239section is not important \cite{CHIPS1}, \cite{CHIPS2}, and low energy
240photonuclear reactions \cite{CHIPS3}, for which the interaction cross
241section can be calculated easily \cite{photNuc}. With modification of
242the first interaction algorithm the CHIPS event generator can be used
243for all kinds of hadronic interaction. The Geant4 String Model
244interface to the CHIPS generator \cite{GEANT4}, \cite{MC2000} also
245makes it possible to use the CHIPS code for nuclear fragmentation at
246extremely high energies.
247
248In the first published versions of the CHIPS event generator the class
249{\tt G4Quasmon} was the head of the model and all initial interactions
250were hidden in its constructor.  More complicated applications of the
251model such as anti-proton nuclear capture at rest and the Geant4
252String Model interface to CHIPS led to the multi-quasmon version of
253the model.  This required a change in the structure of the CHIPS event
254generator classes.  In the case of at-rest anti-proton annihilation in
255a nucleus, for example, the first interaction occurs on the nuclear
256periphery. After this initial interaction, a fraction (defined by a
257special parameter of the model) of the secondary mesons independently
258penetrate the nucleus.  Each of these mesons can create a separate
259quasmon in the interior of the nucleus. In this case the class {\tt
260G4Quasmon} can no longer be the head of the model. A new head class,
261{\tt G4QEnvironment}, was developed which can adopt a vector of
262projectile hadrons ({\tt G4QHadronVector}) and create a vector of
263quasmons, {\tt G4QuasmonVector}. All newly created quasmons then begin
264the energy dissipation process in parallel in the same nucleus. The
265{\tt G4QEnvironment} instance can be used both for vacuum and for nuclear
266matter.  If {\tt G4QEnvironment} is created in vacuum, it is practically
267identical to the {\tt G4Quasmon} class, because in this case only one
268instance of {\tt G4Quasmon} is allowed.  This leaves the model unchanged
269for hadronic interactions.
270
271The convention adopted for the CHIPS model requires all its class names
272to use the prefix {\tt G4Q} in order to distinguish them from other Geant4
273classes, most of which use the {\tt G4} prefix. The intent is that the
274{\tt G4Q} prefix will not be used by other Geant4 projects.
275
276\section{Nucleon-Antinucleon Annihilation at Rest} \label{annil}
277
278In order to generate hadron spectra from the annihilation of a proton
279with an anti-proton at rest, the number of partons in the system must be
280found. For a finite system of $N$ partons with a total center-of-mass energy
281$M$, the invariant phase space integral, $\Phi_N$, is proportional to
282$M^{2N-4}$.  According to the dimensional counting rule, $2N$ comes from
283$\prod\limits_{i=1}^{N}\frac{d^{3}p_{i}}{E_{i}}$, and $4$ comes from
284the energy and momentum conservation function, $\delta ^{4}($\b{P}$-\sum
285$\b{p}$_{i})$.  At a temperature $T$ the statistical density of states is
286proportional to $e^{-\frac{M}{T}}$ so that the probability to find a system
287of $N$ quark-partons in a state with mass $M$ is $dW \propto
288M^{2N-4}e^{-\frac{M}{T}}dM$.  For this kind of probability distribution the
289mean value of $M^{2}$ is
290\begin{equation}
291<M^{2}>=4N(N-1)\cdot T^{2}\label{temperature}
292\end{equation}
293When $N$ goes to infinity one obtains for massless particles the
294well-known $<M>\equiv \sqrt{<M^{2}>}=2NT$ result.
295
296After a nucleon absorbs an incident quark-parton, such as a real or
297virtual photon, for example, the newly formed quasmon has a total of $N$ 
298quark-partons, where $N$ is determined by Eq. \ref{temperature}.
299Choosing one of these quark-partons with energy $k$ in the center of mass
300system (CMS) of $N$ partons, the spectrum of the remaining $N-1$ 
301quark-partons is given by
302\begin{equation}
303\frac{dW}{kdk} \propto (M_{N-1})^{2N-6},
304\end{equation}
305where $M_{N-1}$ is the effective mass of the $N-1$ quark-partons.
306This result was obtained by applying the above phase-space relation
307($\Phi_N \propto M^{2N-4}$) to the residual $N-1$ quarks.  The effective
308mass is a function of the total mass $M$,
309\begin{equation}
310M_{N-1}^{2}=M^{2}-2kM ,  \label{m_n-1}
311\end{equation}
312so that the resulting equation for the quark-parton
313spectrum is:
314\begin{equation}
315\frac{dW}{kdk}\propto (1-\frac{2k}{M})^{N-3}\label{spectrum_1}
316\end{equation}
317
318\subsection{Meson Production}
319
320In this section, only the quark fusion mechanism of hadronization is
321considered. The quark exchange mechanism can take place only in
322nuclear matter where a quasmon has neighboring nucleons.  In order to
323decompose a quasmon into an outgoing hadron and a residual quasmon, one
324needs to calculate the probability of two quark-partons combining to
325produce the effective mass of the outgoing hadron.  This requires that
326the spectrum of the second quark-parton be calculated.  This is done by
327following the same argument used to determine Eq.~\ref{spectrum_1}.
328One quark-parton is chosen from the residual $N-1$.  It has an energy
329$q$ in the CMS of the $N-1$ quark-partons.  The spectrum is obtained by
330substituting $N-1$ for $N$ and $M_{N-1}$ for $M$ in
331Eq.~\ref{spectrum_1} and then using Eq.~\ref{m_n-1} to get
332\begin{equation}
333\frac{dW}{q dq }\propto \left( 1-\frac{2q }{M\sqrt{1-
334\frac{2k}{M}}}\right) ^{N-4}\label{spectrum_2}
335\end{equation}
336
337Next, one of the residual quark-partons must be selected from this spectrum
338such that its fusion with the primary quark-parton makes a hadron of
339mass $\mu$.  This selection is performed by the mass shell condition for
340the outgoing hadron,
341\begin{equation}
342\mu^2 = 2 \frac{k}{\sqrt{1-\frac{2k}{M}}} 
343 \cdot q \cdot (1-\cos \theta ) .  \label{hadron}
344\end{equation}
345Here $\theta$ is the angle between the momenta, {\bf k} and {\bf q} of
346the two quark-partons in the CMS of $N-1$ quarks.  Now the kinematic quark
347fusion probability can be calculated for any primary quark-parton with
348energy $k$:
349\begin{eqnarray}
350P(k,M,\mu )=&&\int \left( 1-\frac{2q }{M\sqrt{1-\frac{2k}{M}}}\right)
351^{N-4} \nonumber\\
352 && \times\  \delta \left( \mu ^{2}-\frac{2kq (1-\cos \theta )}{\sqrt{1-
353\frac{2k}{M}}}\right) q dq d\cos \theta .\ \ \ \
354\end{eqnarray}
355Using the $\delta$-function\footnote{\protect{
356If $g(x_0)$=0, $\int f(x)\delta\left[g(x)\right]dx = 
357\int \frac{f(x)\delta\left[g(x)\right]}{g^\prime(x)} dg(x) = 
358\frac{f(x_0)}{g^\prime(x_0)}$
359}}
360to perform the integration over $q$ one gets:
361\begin{eqnarray}
362P(k,M,\mu )=&&\int \left( 1-\frac{\mu ^{2}}{Mk(1-\cos \theta )}\right)
363^{N-4} \nonumber\\
364 && \times\ \left( \frac{\mu ^{2}\sqrt{1-\frac{2k}{M}}}{2k(1-\cos \theta )}
365\right)^{2}d\left(\frac{1-\cos \theta }{\mu ^{2}}\right) ,\ \
366\end{eqnarray}
367or
368\begin{eqnarray}
369P(k,M,\mu )=&&\frac{M-2k}{4k}\int \left(1-\frac{\mu ^{2}}{Mk(1 -
370\cos\theta)}\right) ^{N-4} \nonumber\\
371 && \times\ d\left(1-\frac{\mu ^{2}}{Mk(1-\cos \theta )}\right).
372\end{eqnarray}
373After the substitution
374$z=1-\frac{2q }{M_{N-1}}=1-\frac{\mu ^{2}}{Mk(1-\cos \theta )}$, this
375becomes
376\begin{equation}
377P(k,M,\mu ) = \frac{M-2k}{4k} \int z^{N-4} dz ,
378\end{equation}
379where the limits of integration are $0$ when
380$\cos\theta = 1 - \frac{\mu ^{2}}{M\cdot k}$, and
381\begin{equation}
382z_{\max }=1-\frac{\mu^2}{2Mk}, \label{z_max}
383\end{equation}
384when $\cos \theta =-1$.  The resulting range of $\theta$\ is therefore
385$-1<\cos \theta < 1-\frac{\mu ^{2}}{M\cdot k}$.  Integrating from $0$ to
386$z$ yields
387\begin{equation}
388\frac{M-2k}{4k\cdot (N-3)}\cdot z^{N-3}\label{z_probab}
389\end{equation}
390and integrating from $0$ to $z_{max}$ yields the total kinematic
391probability for hadronization of a quark-parton with energy $k$ into a
392hadron with mass $\mu$:
393\begin{equation}
394\frac{M-2k}{4k \cdot (N-3)} \cdot z_{\max}^{N-3} .
395                                   \label{tot_kin_probab}
396\end{equation}
397The ratio of expressions \ref{z_probab} and \ref{tot_kin_probab} can be
398treated as a random number, $R$, uniformly distributed on the interval
399[0,1].  Solving for $z$ then gives
400\begin{equation}
401z=\sqrt[N-3]{R}\cdot z_{\max }\label{z_random}
402\end{equation}
403
404In addition to the kinematic selection of the two quark-partons in the
405fusion process, the quark content of the quasmon and the spin of the
406candidate final hadron are used to determine the probability that a
407given type of hadron is produced.  Because only the relative hadron
408formation probabilities are necessary, overall normalization factors can
409be dropped.  Hence the relative probability can
410be written as
411\begin{equation}
412P_h(k,M,\mu )=(2s_h+1)\cdot z_{\max }^{N-3}\cdot C_{Q}^{h} . 
413                                         \label{rel_prob}
414\end{equation}
415Here, only the factor $z_{\max }^{N-3}$ is used since the other factors
416in equation \ref{tot_kin_probab} are constant for all candidates for the
417outgoing hadron.  The factor $2s_h+1$ counts the spin states of a
418candidate hadron of spin $s_h$, and $C_{Q}^{h}$ is the number of ways the
419candidate hadron can be formed from combinations of the quarks within the
420quasmon.  In making these combinations, the standard quark wave functions
421for pions and kaons were used.  For $\eta$ and $\eta^{\prime }$ mesons the
422quark wave functions
423$\eta=\frac{\bar{u}u+\bar{d}d}{2}-\frac{\bar{s}s}{\sqrt{2}}$ and
424$\eta^{\prime }=\frac{\bar{u}u+\bar{d}d}{2}+\frac{\bar{s}s}{\sqrt{2}}$
425were used.  No mixing was assumed for the $\omega $\ and $\phi $\ meson
426states, hence $\omega =\frac{ \bar{u}u+\bar{d}d}{\sqrt{2}}$ and
427$\varphi=\bar{s}s$.
428
429A final model restriction is applied to the hadronization process:
430after a hadron is emitted, the quark content of the residual quasmon
431must have a quark content corresponding to either one or two real
432hadrons.  When the quantum numbers of a quasmon, determined by its quark
433content, cannot be represented by the quantum numbers of a real hadron,
434the quasmon is considered to be a virtual hadronic molecule such as
435$\pi ^{+}\pi ^{+}$ or $K^{+}\pi ^{+}$, in which case it is defined in
436the CHIPS model to be a Chipolino pseudo-particle.
437
438To fuse quark-partons and create the decay of a quasmon into a hadron and
439residual quasmon, one needs to generate randomly the residual quasmon mass
440$m$, which in fact is the mass of the residual $N-2$ quarks.  Using an
441equation similar to \ref{m_n-1}) one finds that
442\begin{equation}
443m^{2}=z\cdot (M^{2}-2kM).  \label{m(z)}
444\end{equation}
445Using Eqs. \ref{z_random} and \ref{z_max}, the mass of the residual
446quasmon can be expressed in terms of the random number $R$:
447\begin{equation}
448m^{2}=(M-2k)\cdot (M-\frac{\mu ^{2}}{2k})\cdot \sqrt[N-3]{R} .
449\label{res_quasmon}
450\end{equation}
451At this point, the decay of the original quasmon into a final state
452hadron and a residual quasmon of mass $m$ has been simulated.  The process
453may now be repeated on the residual quasmon.
454
455This iterative hadronization process continues as long as the residual
456quasmon mass remains greater than $m_{\min }$, whose value depends on the
457type of quasmon.  For hadron-type residual quasmons
458\begin{equation}
459 m_{\min }=m_{\min }^{QC}+m_{\pi ^{0}}\label{m_min}
460\end{equation}
461where $m_{\min }^{QC}$ is the minimum hadron mass for the residual
462quark content (QC).  For Chipolino-type residual quasmons consisting
463of hadrons $h_1$ and $h_2$,
464\begin{equation}
465 m_{\min }=m_{h_1}+m_{h_2}. \label{m_min_chipolino}
466\end{equation}
467These conditions insure that the quasmon always has enough energy to decay
468into at least two final state hadrons, conserving four-momentum and charge.
469
470If the remaining CMS energy of the residual quasmon falls below $m_{\min}$,
471then the hadronization process terminates with a final two-particle decay. 
472If the parent quasmon is a Chipolino consisting of hadrons $h_1$ and $h_2$,
473then a binary decay of the parent quasmon into $m_{h_1}$ and $m_{h_2}$ 
474takes place.  If the parent quasmon is not a Chipolino then a decay into
475$m_{\min}^{QC}$ and $m_h$ takes place.  The decay into $m_{\min}^{QC}$ and
476$m_\pi^0$ is always possible in this case because of condition \ref{m_min}.
477
478If the residual quasmon is not Chipolino-type, and $m>m_{\min}$, the
479hadronization loop can still be finished by the resonance production
480mechanism, which is modeled following the concept of parton-hadron
481duality \cite{Duality}.  If the residual quasmon has a mass in the vicinity
482of a resonance with the same quark content ($\rho$ or $K^{\ast}$ for
483example), there is a probability for the residual quasmon to convert to
484this resonance.\footnote{When comparing quark contents, the quark content
485of the quasmon is reduced by canceling quark-antiquark pairs of the same
486flavor.}
487In the present version of the CHIPS event generator the probability of
488convert to the resonance is given by
489\begin{equation}
490P_{\rm{res}}=\frac{m_{\min }^{2}}{m^{2}}\label{res_probab}
491\end{equation}
492Hence the resonance with the mass-squared value $m_{r}^{2}$ closest to
493$m^{2}$ is selected, and the binary decay of the quasmon into $m_{h}$ 
494and $m_{r}$ takes place.
495
496With more detailed experimental data, it will be possible to take into
497account angular momentum conservation, as well as $C$-, $P$- and
498$G$-parity conservation.  In the present version of the generator, $\eta$ 
499and $\eta ^{\prime }$ are suppressed by a factor of $0.3$.  This factor
500was tuned using data from experiments on antiproton annihilation at rest
501in liquid hydrogen and can be different for other hadronic reactions.  It
502is possible to vary it when describing other reactions.
503
504Another parameter, $s/u$, controls the suppression of heavy quark
505production \cite{JETSET}.  For proton-antiproton annihilation at rest the
506strange quark-antiquark sea was found to be suppressed by the factor
507$s/u = 0.1$.  In the JETSET \cite{JETSET} event generator, the default
508value for this parameter is $s/u = 0.3$.  The lower value may be due to
509quarks and anti-quarks of colliding hadrons initially forming a non-strange
510sea, with the strange sea suppressed by the OZI rule \cite{OZI}.  This
511question is still under discussion \cite{OZI_violation} and demands further
512experimental measurements.  The $s/u$ parameter may differ for other
513reactions.  In particular, for e$^{+}$e$^{-}$ reactions it can be closer to
5140.3.
515
516Finally, the temperature parameter has been fixed at $T=180$ MeV.  In
517earlier versions of the model it was found that this value successfully
518reproduced spectra of outgoing hadrons in different types of medium-energy
519reactions.
520
521\begin{figure}
522% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/mommul.eps, height=3.5in, width=4.5in}}
523%  \resizebox{1.00\textwidth}{!}
524%{
525\includegraphics[angle=0,scale=0.6]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/mommul.eps}
526%\includegraphics[angle=0,scale=0.6]{plots/mommul.eps}
527%}
528\caption{(a) (left): momentum distribution of charged pions produced in
529proton-antiproton annihilation at rest.  The experimental data are from
530\protect\cite{pispectrum}, and the histogram was produced by the CHIPS
531Monte Carlo.  The experimental spectrum is normalized to the measured
532average charged pion multiplicity, 3.0. (b) (right): pion multiplicity
533distribution.  Data points were taken from compilations of experimental
534data \protect\cite{pap_exdata}, and the histogram was produced by the
535CHIPS Monte Carlo.  The number of events with kaons in the final state is
536shown in pion multiplicity bin 9, where no real 9-pion events are
537generated or observed experimentally.  In the model, the percentage of
538annihilation events with kaons is close to the experimental value of
5396\% \cite{pap_exdata}.
540}
541\label{mommul}
542\end{figure}
543
544\begin{figure}
545% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/channels.eps, height=3.5in, width=4.5in}}
546%  \resizebox{1.00\textwidth}{!}
547%{
548\includegraphics[angle=0,scale=0.6]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/channels.eps}
549%\includegraphics[angle=0,scale=0.6]{plots/channels.eps}
550%}
551\caption{Branching probabilities for different channels in
552proton-antiproton annihilation at rest. The experimental data are from
553\protect\cite {pap_exdata}, and the histogram was produced by the CHIPS
554Monte Carlo. }
555\label{channels}
556\end{figure}
557
558The above parameters were used to fit not only the spectrum of pions
559Fig.~\ref{mommul},a and the multiplicity distribution for pions
560Fig.~\ref{mommul},b but also branching ratios of various measured
561\cite{pispectrum,pap_exdata} exclusive channels as shown in Figs.
562~\ref{channels},~\ref{threechan},~\ref{twochan}.  In Fig.~\ref{twochan} 
563one can see many decay channels with higher meson resonances.  The
564relative contribution of events with meson resonances produced in the
565final state is 30 - 40 percent, roughly in agreement with experiment. The
566agreement between the model and experiment for particular decay modes is
567within a factor of 2-3 except for the branching ratios to higher
568resonances.  In these cases it is not completely clear how the resonance
569is defined in a concrete experiment.  In particular, for the
570$a_{2}\omega $ channel the mass sum of final hadrons is 2100 MeV with a
571full width of about 110 MeV while the total initial energy of the p\={p} 
572annihilation reaction is only 1876.5 MeV.  This decay channel can be
573formally simulated by an event generator using the tail of the Breit-Wigner
574distribution for the $a_{2}$ resonance, but it is difficult to imagine how
575the $a_{2}$ resonance can be experimentally identified $2\Gamma $ away
576from its mean mass value.
577
578\subsection{Baryon Production}
579
580To model fragmentation into baryons the POPCORN idea \cite{POPCORN} was
581used, which assumes the existence of diquark-partons.  The assumption of
582massless diquarks is somewhat inconsistent at low energies, as is the
583assumption of massless s-quarks, but it is simple and it helps to generate
584baryons in the same way as mesons.
585
586Baryons are heavy, and the baryon production in $p\bar p$ annihilation
587reactions at medium energies is very sensitive to the value of the
588temperature. If the temperature is low, the baryon yield is small, and
589the mean multiplicity of pions increases very noticeably with center-of-mass
590energy as seen in Fig.~\ref{apcmul}.  For higher temperature values the baryon
591yield reduces the pion multiplicity at higher energies.  The existing
592experimental data \cite{Energy_Dep}, shown in Fig.~\ref{apcmul}, can be
593considered as a kind of ``thermometer'' for the model.  This thermometer
594confirms that the critical temperature is about 200 MeV.
595
596\begin{figure}
597% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/threechn.eps, height=4.5in, width=4.5in}}
598%  \resizebox{1.00\textwidth}{!}
599%{
600\includegraphics[angle=0,scale=0.6]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/threechn.eps}
601%\includegraphics[angle=0,scale=0.6]{plots/threechn.eps}
602%}
603\caption{Branching probabilities for different channels with
604three-particle final states in proton-antiproton annihilation at
605rest.  The points are experimental data \protect\cite{pap_exdata} and the
606histogram is from the CHIPS Monte Carlo. }
607\label{threechan}
608\end{figure}
609\begin{figure}
610% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/twochn.eps, height=4.5in, width=4.5in}}
611%  \resizebox{1.00\textwidth}{!}
612%{
613\includegraphics[angle=0,scale=0.6]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/twochn.eps}
614%\includegraphics[angle=0,scale=0.6]{plots/twochn.eps}
615%}
616\caption{Branching probabilities for different channels with
617two-particle final states in proton-antiproton annihilation at
618rest. The points are experimental data \protect\cite{pap_exdata} and the
619histogram is from the CHIPS Monte Carlo. }
620\label{twochan}
621\end{figure}
622\begin{figure}
623% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/apcmul.eps, height=4.5in, width=4.5in}}
624%  \resizebox{1.00\textwidth}{!}
625%{
626\includegraphics[angle=0,scale=0.6]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/apcmul.eps}
627%\includegraphics[angle=0,scale=0.6]{plots/apcmul.eps}
628%}
629\caption{Average meson multiplicities in proton-antiproton and in
630electron-positron annihilation, as a function of the center-of-mass energy of
631the interacting hadronic system.  The points are experimental data
632\protect\cite {Energy_Dep} and the lines are CHIPS Monte Carlo calculations
633at several values of the critical temperature parameter $T$. }
634\label{apcmul}
635\end{figure}
636
637It can be used as a tool for the Monte Carlo simulation of a wide variety
638of hadronic reactions.  The CHIPS event generator can be used not only for
639``phase-space background'' calculations in place of the standard GENBOD
640routine \cite{GENBOD}, but even for taking into account the reflection of
641resonances in connected final hadron combinations.  Thus it can be useful
642for physics analysis too, even though its main range of application is the
643simulation of the evolution of hadronic and electromagnetic showers in
644matter at medium energies.
645
646\section[Nuclear Pion Capture Below Delta(3,3)]{Nuclear Pion Capture at Rest and Photonuclear Reactions Below the Delta(3,3) Resonance} \label{picap}
647
648When compared with the first ``in vacuum'' version of the model, described
649in Section \ref{annil}, modeling hadronic fragmentation in nuclear matter
650is more complicated because of the much greater number of possible
651secondary fragments.  However, the hadronization process itself
652is simpler in a way.  In vacuum, the quark-fusion mechanism requires a
653quark-parton partner from the external (as in
654JETSET \cite{JETSET}) or internal (the quasmon itself, Section \ref{annil})
655quark-antiquark sea.  In nuclear matter, there is a second possibility:
656quark exchange with a neighboring hadronic system, which could be a nucleon
657or multinucleon cluster. 
658
659In nuclear matter the spectra of secondary hadrons and nuclear fragments
660reflect the quark-parton energy spectrum within a quasmon.  In the case of
661inclusive spectra that are decreasing steeply with energy, and
662correspondingly steeply decreasing spectra of the quark-partons in a quasmon,
663only those secondary hadrons which get the maximum energy from the primary
664quark-parton of energy $k$ contribute to the inclusive spectra.  This
665extreme situation requires the exchanged quark-parton with energy $q$,
666coming toward the quasmon from the cluster, to move in a direction
667opposite to that of the primary quark-parton.  As a result the
668hadronization quark exchange process becomes one-dimensional along the
669direction of $k$.  If a neighboring nucleon or nucleon cluster with bound
670mass $\tilde{\mu}$ absorbs the primary quark-parton and radiates the
671exchanged quark-parton in the opposite direction, then the energy of the
672outgoing fragment is $E=\tilde{\mu}+k-q$, and the momentum is $p=k+q$.
673Both the energy and the momentum of the outgoing nuclear fragment are known,
674as is the mass $\tilde{\mu}$ of the nuclear fragment in nuclear matter, so
675the momentum of the primary quark-parton can be reconstructed using the
676approximate relation
677\begin{equation}
678k=\frac{p+E-B\cdot m_{N}}{2} .  \label{k}
679\end{equation}
680Here $B$ is the baryon number of the outgoing fragment
681($\tilde{\mu}\approx B\cdot m_{N}$) and $m_N$ is the nucleon mass.  In
682Ref.~\cite{K_parameter} it was shown that the invariant inclusive spectra of
683pions, protons, deuterons, and tritons in proton-nucleus reactions at
684400~GeV \cite{FNAL} not only have the same exponential slope but almost
685coincide when they are plotted as a function of $k=\frac{p+E_{\rm{kin}}}{2}$.
686Using data at 10~GeV \cite{FAS}, it was shown that the parameter $k$, defined
687by Eq.~\ref{k}, is also appropriate for the description of secondary
688anti-protons produced in high energy nuclear reactions.  This means that the
689extreme assumption of one-dimensional hadronization is a good approximation.
690
691The same approximation is also valid for the quark fusion mechanism.  In
692the one-dimensional case, assuming that $q$ is the momentum of the second
693quark fusing with the primary quark-parton of energy $k$, the total energy
694of the outgoing hadron is $E=q+k$ and the momentum is $p=k-q$.  In the
695one-dimensional case the secondary quark-parton must move in the opposite
696direction with respect to the primary quark-parton, otherwise the mass of
697the outgoing hadron would be zero.  So, for mesons $k=\frac{p+E}{2}$, in
698accordance with Eq.~\ref{k}.  In the case of anti-proton radiation, the
699baryon number of the quasmon is increased by one, and the primary
700antiquark-parton will spend its energy to build up the mass of the
701antiproton by picking up an anti-diquark.  Thus, the energy conservation
702law for antiproton radiation looks like $E+m_{N}=q+k$ and
703$k=\frac{p+E+m_{N}}{2}$, which is again in accordance with Eq.~\ref{k}.
704
705The one-dimensional quark exchange mechanism was proposed in 1984
706\cite{K_parameter}.  Even in its approximate form it was useful in the
707analysis of inclusive spectra of hadrons and nuclear fragments in
708hadron-nuclear reactions at high energies.  Later the same approach was
709used in the analysis of nuclear fragmentation in electro-nuclear
710reactions \cite{TPC}.  Also in 1984 the quark-exchange mechanism developed
711in the framework of the non-relativistic quark model was found to be
712important for the explanation of the short distance features of $NN$ 
713interactions \cite{NN QEX}.  Later it was successfully applied to
714$K^{-}p$ interactions \cite{Kp QUEX}.  The idea of the quark exchange
715mechanism between nucleons was useful even for the explanation of the EMC
716effect \cite{EMC}.  For the non-relativistic quark model, the quark
717exchange technique was developed as an alternative to the Feynman diagram
718technique at short distances \cite{QUEX}.
719
720The CHIPS event generator models quark exchange processes, taking into
721account kinematic and combinatorial factors for asymptotically free
722quark-partons.  In the naive picture of the quark-exchange mechanism,
723one quark-parton tunnels from the asymptotically free region of one hadron
724to the asymptotically free region of another hadron.  To conserve color,
725another quark-parton from the neighboring hadron must replace the first
726quark-parton in the quasmon.  This makes the tunneling mutual, and the
727resulting process is quark exchange.
728
729The experimental data available for multihadron production at high energies
730show regularities in the secondary particle spectra that can be related to
731the simple kinematic, combinatorial, and phase space rules of such quark
732exchange and fusion mechanisms.  The CHIPS model combines these mechanisms
733consistently.
734
735\begin{figure}[tbp]
736% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/diagram.eps, height=2.5in, width=2.5in}}
737%\resizebox{1.00\textwidth}{!}
738%{
739\includegraphics[angle=0,scale=0.6]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/diagram.eps}
740%\includegraphics[angle=0,scale=0.6]{plots/diagram.eps}
741%}
742\caption{Diagram of the quark exchange mechanism. }
743\label{diagram}
744\end{figure}
745
746Fig.~\ref{diagram} shows a quark exchange diagram which helps to keep track
747of the kinematics of the process.  It was shown in Section \ref{annil} that
748a quasmon, $Q$ is kinematically determined by a few asymptotically free
749quark-partons homogeneously distributed over the invariant phase space.  The
750quasmon mass $M$ is related to the number of quark-partons $N$ through
751\begin{equation}
752<M^{2}>=4N(N-1)\cdot T^{2}\label{temperatureII}
753\end{equation}
754where $T$ is the temperature of the system.
755
756The spectrum of quark partons can be calculated as
757\begin{equation}
758\frac{dW}{k^{\ast }dk^{\ast}}\propto 
759 \left(1-\frac{2k^{\ast}}{M} \right)^{N-3}\label{spectrum_1II}
760\end{equation}
761where $k^{\ast}$ is the energy of the primary quark-parton in the
762center-of-mass system of the quasmon.  After the primary quark-parton
763is randomized and the neighboring cluster, or parent cluster, $PC$, with
764bound mass $\tilde{\mu}$\ is selected, the quark exchange process begins.
765To follow the process kinematically one should imagine a colored, compound
766system consisting of a stationary, bound parent cluster and the primary quark.
767The primary quark has energy $k$ in the lab system,
768\begin{equation}
769k=k^{\ast }\cdot \frac{E_{N}+p_{N}\cdot \cos (\theta _{k})}{M_{N}},
770\end{equation}
771where $M_N$, $E_N$ and $p_N$ are the mass, energy, and momentum of the
772quasmon in the lab frame.  The mass of the compound system, $CF$, is
773$\mu _{c}=\sqrt{(\tilde{\mu}+k)^{2}}$, where $\tilde{\mu}$ and $k$ are the
774corresponding four-vectors.  This colored compound system decays into a
775free outgoing nuclear fragment, $F$, with mass $\mu$ and a recoiling quark
776with energy $q$$q$ is measured in the CMS of $\tilde{\mu}$, which
777coincides with the lab frame in the present version of the model because no
778cluster motion is considered.  At this point one should recall that a colored
779residual quasmon, $CRQ$, with mass $M_{N-1}$ remains after the radiation of
780$k$$CRQ$ is finally fused with the recoil quark $q$ to form the residual
781quasmon $RQ$.  The minimum mass of $RQ$ should be greater than $M_{\min}$,
782which is determined by the minimum mass of a hadron (or Chipolino
783double-hadron as defined in Section \ref{annil}) with the same quark content.
784
785All quark-antiquark pairs with the same flavor should be canceled in the
786minimum mass calculations.  This imposes a restriction, which in the
787center-of-mass system of $\mu_{c}$, can be written as
788\begin{equation}
7892q\cdot (E-p\cdot \cos \theta_{qCQ})+M_{N-1}^{2}>M_{\min }^{2},
790\label{min_mass}
791\end{equation}
792where $E$ is the energy and $p$ is the momentum of the colored residual
793quasmon with mass $M_{N-1}$ in the CMS of $\mu _{c}$.  The restriction for
794$\cos\theta_{qCQ}$ then becomes
795\begin{equation}
796\cos \theta _{qCQ}<\frac{2qE-M_{\min }^{2}+M_{N-1}^{2}}{2qp},
797\label{cost_restriction}
798\end{equation}
799which implies
800\begin{equation}
801q>\frac{M_{N-1}^{2}-M_{\min }^{2}}{2\cdot (E+p)}\label{resid_rest}
802\end{equation}
803
804A second restriction comes from the nuclear Coulomb barrier for charged
805particles.  The Coulomb barrier can be calculated in the simple form:
806\begin{equation}
807E_{CB}=\frac{Z_{F}\cdot
808Z_{R}}{A_{F}^{\frac{1}{3}}+A_{R}^{\frac{1}{3}}}\ (\rm{MeV}),
809\label{CoulBar}
810\end{equation}
811where $Z_F$ and $A_F$ are the charge and atomic weight of the fragment, and
812$Z_R$ and $A_R$ are the charge and atomic weight of the residual nucleus.
813The obvious restriction is
814\begin{equation}
815   q<k+\tilde{\mu}-\mu -E_{CB}\label{cb_rest}
816\end{equation}
817
818In addition to \ref{resid_rest} and \ref{cb_rest}, the quark
819exchange mechanism imposes restrictions which are calculated below.  The
820spectrum of recoiling quarks is similar to the $k^{\ast}$ spectrum in the
821quasmon (\ref{spectrum_1II}):
822\begin{equation}
823  \frac{dW}{q\ dq\ d\cos \theta }\propto 
824  \left(1-\frac{2q}{\tilde{\mu}}\right)^{n-3}, \label{spectrum_2II}
825\end{equation}
826where $n$ is the number of quark-partons in the nucleon cluster.  It is
827assumed that $n = 3 A_C$, where $A_C$ is the atomic weight of the parent
828cluster.  The tunneling of quarks from one nucleon to another provides a
829common phase space for all quark-partons in the cluster.
830
831An additional equation follows from the mass shell condition for the
832outgoing fragment,
833\begin{equation}
834\mu ^{2}=\tilde{\mu}^{2}+2\tilde{\mu}\cdot k-2\tilde{\mu}\cdot q-2k\cdot
835q\cdot (1-\cos \theta _{kq}),  \label{hadronII}
836\end{equation}
837where $\theta _{kq}$ is the angle between quark-parton momenta in the lab
838frame.  From this equation $q$ can be calculated as
839\begin{equation}
840q=\frac{\tilde{\mu}\cdot (k-\Delta )}{\tilde{\mu}+k\cdot 
841(1-\cos \mathit{\theta }_{\mathit{kq}})}\label{q-cos}
842\end{equation}
843where $\Delta $ is the covariant binding energy of the cluster
844$\Delta =\frac{\mu ^{2}-\tilde{\mu}^{2}}{2\tilde{\mu}}$.
845The quark exchange probability integral can be then written in the form:
846\begin{eqnarray}
847&&P(k,\tilde{\mu},\mu )=  \nonumber \\
848&&\int \delta \left[ \mu ^{2}-\tilde{\mu}^{2}-2\tilde{\mu}\cdot k+2\tilde{\mu
849}\cdot q+2k\cdot {q}\cdot (1-\cos \theta _{kq})\right]   \nonumber \\
850&&\ \ \ \ \ \ \ \ \times \ \left( 1-\frac{2{q}}{\tilde{\mu}}\right) ^{n-3}{q}
851d{q\cdot }d\cos \theta _{kq}.
852\end{eqnarray}
853Using the $\delta$-function to perform the integration over $q$ one obtains
854\begin{eqnarray}
855P(k,\tilde{\mu},\mu ) &=&\int \left( 1-\frac{2(k-\Delta )}{\tilde{\mu}
856+k(1-\cos \theta _{\mathit{kq}})}\right) ^{n-3}  \nonumber \\
857&&\times \ \frac{\tilde{\mu}(k-\Delta )}{2[\tilde{\mu}+k(1-\cos \mathit{
858\theta }_{\mathit{kq}})]^{2}}d\mathit{\cos \theta }_{\mathit{kq}}
859\end{eqnarray}
860or
861\begin{eqnarray}
862P(k,\tilde{\mu},\mu ) &=&\int \left( 1-\frac{2(k-\Delta )}{\tilde{\mu}
863+k(1-\cos \theta _{\mathit{kq}})}\right) ^{n-3}  \nonumber \\
864&&\times \ \left( \frac{\tilde{\mu}(k-\Delta )}{\tilde{\mu}+k(1-\cos 
865\mathit{\theta }_{\mathit{kq}})}\right) ^{2}  \nonumber \\
866&&\times \ d \left( \frac{\tilde{\mu}+k(1-\cos 
867\mathit{\theta }_{\mathit{kq}})}{\tilde{\mu}(k-\Delta )}\right).
868\end{eqnarray}
869The result of the integration is
870\begin{eqnarray}
871&&P(k,\tilde{\mu},\mu )=\frac{\tilde{\mu}}{4k(n-2)}  \nonumber \\
872&&\times \ \left[ \left( 1-\frac{2(k-\Delta )}{\tilde{\mu}+2k}\right)
873_{\rm{high}}^{n-2}-\left( 1-\frac{2(k-\Delta )}{\tilde{\mu}}\right)
874_{\rm{low}}^{n-2}%
875\right] .  \label{QUEX_Int}
876\end{eqnarray}
877For randomization it is convenient to make $z$ a random parameter
878\begin{equation}
879z=1-\frac{2(k-\Delta )}{\tilde{\mu}+k(1-\cos 
880\theta_{\mathit{kq}})}=1-\frac{2{q}}{\tilde{\mu}}\label{z(q)}
881\end{equation}
882From (\ref{QUEX_Int}) one can find the high and the low limits of the
883randomization. The first limit is for $k$: $k>\Delta$. It is
884similar to the restriction for quasmon fragmentation in vacuum:
885$k^{\ast}>\frac{\mu^{2}}{2M}$. The second limit is
886$k=\frac{\mu^{2}}{2\tilde{\mu}}$, when the low limit of randomization
887becomes equal to zero. If $k<\frac{\mu^{2}}{2\tilde{\mu}}$, then
888$-1<\cos\theta_{kq}<1$\ and
889$z_{\rm{low}}=1-\frac{2(k-\Delta)}{\tilde{\mu}}$. If
890$k>\frac{\mu^{2}}{2\tilde{\mu}}$, then the range of $\cos\theta
891_{kq}$\ is $-1<\cos\theta_{kq}<\frac{\mu^{2}}{k\tilde{\mu}}-1$\ and
892$z_{\rm{low}}=0$.  This value of $z_{\rm{low}}$\ should be corrected
893using the Coulomb barrier restriction (\ref{cb_rest}), and the value of
894$z_{\rm{high}}$ should be corrected using the minimum residual quasmon
895restriction (\ref{resid_rest}). In the case of a quasmon with momentum much
896less than $k$ it is possible to impose tighter restrictions than
897(\ref{resid_rest}) because the direction of motion of the CRQ is
898opposite to $k$. So
899$\cos\theta_{qCQ}=-\cos\mathit{\theta}_{\mathit{kq}}$, and from
900(\ref{q-cos}) one can find that
901\begin{equation}
902\cos \theta_{qCQ} =1-\frac{\tilde{\mu}\cdot (k-\Delta -q)}{k\cdot q}.
903\label{cos_q}
904\end{equation}
905So in this case the equation (\ref{resid_rest})\ can be replaced by
906the more stringent one:
907\begin{equation}
908q>\frac{M_{N-1}^{2}-M_{\min }^{2}+2\frac{p\cdot 
909\tilde{\mu}}{k}(k-\Delta )}{2\cdot (E+p+\frac{p\cdot \tilde{\mu}}{k})}.
910\end{equation}
911
912The integrated kinematical quark exchange probability (in the range
913from $z_{\rm{low}}$ to $z_{\rm{high}}$) is
914\begin{equation}
915\frac{\tilde{\mu}}{4k(n-2)}\cdot z^{n-2}\label{z_probabII}
916\end{equation}
917and the total kinematic probability of hadronization of the quark-parton
918with energy $k$ into a nuclear fragment with mass\ $\mu $ is
919\begin{equation}
920\frac{\tilde{\mu}}{4k(n-2)}\cdot 
921\left( z_{\rm{high}}^{n-2}-z_{\rm{low}}^{n-2}\right).
922\label{tot_kin_probabII}
923\end{equation}
924This can be compared with the vacuum probability of the quark fusion mechanism
925from Section \ref{annil}:
926\begin{equation}
927\frac{M-2k}{4k(N-3)}z_{\max }^{N-3}.
928\end{equation}
929The similarity is very important, as the absolute probabilities
930define the competition between vacuum and nuclear channels.
931
932Equations (\ref{z_probabII})\ and (\ref{tot_kin_probabII})\ can be used for
933randomization of $z$:
934\begin{equation}
935z=z_{\rm{low}}+\sqrt[n-2]{R}\cdot (z_{\rm{high}}-z_{\rm{low}}),
936 \label{z_randomII}
937\end{equation}
938where $R$\ is a random number, uniformly distributed in the interval (0,1).
939
940Eq. (\ref{tot_kin_probabII})\ can be used to control the competition
941between different nuclear fragments and hadrons in the hadronization
942process, but in contrast to the case of ``in vacuum'' hadronization
943it is not enough to take into account only the quark combinatorics of the
944quasmon and the outgoing hadron. In the case of hadronization in nuclear
945matter, different parent bound clusters should be taken into account as well.
946For example, tritium can be radiated as a result of quark exchange with a
947bound tritium cluster or as a result of quark exchange with a bound $^3$He
948cluster.
949
950To calculate the yield of fragments it is necessary to calculate the
951probability to find a cluster with certain proton and neutron content
952in a nucleus. One could consider any particular probability as an
953independent parameter, but in such a case the process of tuning the model
954would be difficult. We proposed the following scenario of
955clusterization. A gas of quasi-free nucleons is close to the phase
956transition to a liquid bound by strong quark exchange forces. Precursors of
957the liquid phase are nuclear clusters, which may
958be considered as ``drops'' of the liquid phase within the nucleus. Any
959cluster can meet another nucleon and absorb it (making it bigger),
960or it can release one of the nucleons (making it smaller).  The
961first parameter $\varepsilon_{1}$\ is the percentage of quasi-free
962nucleons not involved in the clusterization process. The rest of the
963nucleons ($1-\varepsilon_{1}$) clusterize.
964We assume that since on the periphery of the nucleus the density
965is lower, one can consider only dibaryon clusters, and neglect
966triple-baryon clusters.  Still we denote the number of nucleons
967clusterized in dibaryons on the periphery by the parameter
968$\varepsilon_{2}$.  In the dense part of the nucleus, strong quark
969exchange forces make clusters out of quasi-free nucleons with high
970probability.  To characterize the distribution of clusters the
971clusterization probability parameter $\omega$ was used.
972
973If the number of nucleons involved in clusterization is
974$a=(1-\varepsilon_{1}-\varepsilon _{2})\cdot A$, then the probability
975to find a cluster consisting of $\nu$\ nucleons is defined by the
976distribution
977\begin{equation}
978P_{\nu }\propto C_{\nu }^{a}\cdot \omega ^{\nu -1},
979\end{equation}
980where $C_{\nu }^{a}$ is the corresponding binomial coefficient.
981The coefficient of proportionality can be found from the equation
982\begin{equation}
983a=b\cdot \sum\limits_{\nu =1}^{a}\nu \cdot C_{\nu }^{a}\cdot \omega ^{\nu
984-1}=b\cdot a\cdot (1+\omega )^{a-1}.
985\end{equation}
986Thus, the number of clusters consisting of $\nu$\ nucleons is
987\begin{equation}
988P_{\nu }=\frac{C_{\nu }^{a}\cdot \omega ^{\nu -1}}{(1+\omega )^{a-1}}.
989\end{equation}
990For clusters with an even number of nucleons we used only isotopically
991symmetric configurations ($\nu=2n$, $n$\ protons and $n$\ neutrons) and
992for odd clusters ($\nu =2n+1$) we used only two configurations: $n$\
993neutrons with $n+1$\ protons and $n+1$\ neutrons with $n$\ protons. This
994restriction, which we call ``isotopic focusing'', can be considered an
995empirical rule of the CHIPS model which helps to describe data. It is
996applied in the case of nuclear
997clusterization (isotopically symmetric clusters) and in the case of
998hadronization in nuclear matter.  In the hadronization process the
999quasmon is shifted from the isotopic symmetric state (e.g., by capturing
1000a negative pion) and transfers excess charge to the outgoing nuclear
1001cluster. This tendency is symmetric with respect to the quasmon and
1002the parent cluster.
1003
1004The temperature parameter used to calculate the number of
1005quark-partons in a quasmon (see equation~\ref{temperatureII}) was chosen
1006to be $T=180$ MeV, which is the same as in Section \ref{annil}.
1007
1008CHIPS is mostly a model of fragmentation, conserving energy, momentum, and
1009charge. But to compare it with experimental data one needs to model also the
1010first interaction of the projectile with the
1011nucleus.  For proton-antiproton annihilation this was easy, as we
1012assumed that in the interaction at rest, a proton and antiproton always
1013create a quasmon. In the case of pion capture the pion can be captured by
1014different clusters. We assumed that the probability of capture is
1015proportional to the number of nucleons in a cluster.  After the
1016capture the quasmon is formed, and the CHIPS generator produces
1017fragments consecutively and recursively, choosing at each step the
1018quark-parton four-momentum $k$, the type of parent and outgoing fragment,
1019and the four-momentum of the exchange quark-parton $q$, to produce
1020a final state hadron and the new quasmon with less energy.
1021
1022In the CHIPS model we consider this process as a chaotic process
1023with large number of degrees of freedom and do not take into account
1024any final state interactions of outgoing hadrons. Nevertheless, when
1025the excitation energy dissipates, and in some step the quasmon mass
1026drops below the mass shell, the quark-parton mechanism of hadronization
1027fails. To model the event exclusively, it becomes necessary to
1028continue fragmentation at the hadron level. Such a fragmentation process
1029is known as nuclear evaporation. It is modeled using the
1030non-relativistic phase space approach.  In the non-relativistic case the
1031phase space of nucleons can be integrated as well as in the
1032ultra-relativistic case of quark-partons.
1033
1034The general formula for the non-relativistic phase space can be found starting
1035with the phase space for two particles $\tilde{\Phi}_{2}$. It is
1036proportional to the center-of-mass momentum:
1037\begin{equation}
1038\tilde{\Phi}_2(W_2) \propto \sqrt{W_2}\label{F2}
1039\end{equation}
1040where $W_2$\ is a total kinetic energy of the two non-relativistic
1041particles.  If the phase space integral is known for $n-1$\ hadrons
1042then it is possible to calculate the phase space integral for $n$\
1043hadrons:
1044\begin{eqnarray}
1045\tilde{\Phi}_{n}(W_n) &=&\int \tilde{\Phi}_{n-1}(W_{n-1}) \cdot
1046\delta (W_{n}-W_{n-1}-E_{\rm{kin}}\nonumber \\
1047&&\times \sqrt{E_{\rm{kin}}}dE_{\rm{kin}} dW_{n-1}\label{Fn} 
1048\end{eqnarray}
1049Using (\ref{F2})\ and (\ref{Fn})\ one can find that
1050\begin{equation}
1051\tilde{\Phi}_{n}(W_n)\propto W_{n}^{\frac{3}{2}n-\frac{5}{2}}
1052\end{equation}
1053and the spectrum of hadrons, defined by the phase space of residual
1054$n-1$ nucleons, can be written as
1055\begin{equation}
1056\frac{dN}{\sqrt{E_{\rm{kin}}}dE_{\rm{kin}}} \propto 
1057\left(1-\frac{E_{\rm{kin}}}{W_{n}}\right)^{\frac{3}{2}n-4}.
1058\label{evap_spectr}
1059\end{equation}
1060This spectrum can be randomized. The only problem is from which level one
1061should measure the thermal kinetic energy when most nucleons in nuclei
1062are filling nuclear levels with zero temperature. To model the evaporation
1063process we used this unknown level as a parameter $U$\ of the evaporation
1064process. Comparison with experimental data gives $U=1.7$ MeV. Thus, the
1065total kinetic energy of $A$\ nucleons is
1066\begin{equation}
1067W_{A}=U\cdot A+E_{\rm{ex}},
1068\end{equation}
1069where $E_{\rm{ex}}$ is the excitation energy of the nucleus.
1070
1071To\  be\  radiated,\ \  the nucleon\ \  should\ \  overcome\ \  the threshold
1072\begin{equation}
1073U_{\rm{thresh}}=U+U_{\rm{bind}}+E_{CB},
1074\end{equation}
1075where $U_{\rm{bind}}$\ is the separation energy of the nucleon, and
1076$E_{CB}$\ is the Coulomb barrier energy which is non-zero only for
1077positive particles and can be calculated using formula
1078(\ref{CoulBar}).
1079
1080From several experimental investigations of nuclear pion capture at
1081rest, four published results have been selected here, which
1082constitute, in our opinion, a representative data set covering a wide
1083range of target nuclei, types of produced hadrons and nuclear
1084fragments, and their energy range. In the first publication
1085\cite{MIPHI}\ the spectra of charged fragments (protons, deuterons,
1086tritons, $^{3}$He, $^{4}$He) in pion capture were measured on
108717 nuclei within one experimental setup. To verify the spectra we
1088compared them for a carbon target with detailed measurements of the
1089spectra of charged fragments given in Ref.~\cite{Mechtersheimer}. In
1090addition, we took $^{6}$Li spectra for a carbon
1091target from the same paper.
1092
1093The neutron spectra were added from Ref.~\cite{Cernigoi} and
1094Ref.~\cite{Madey}. We present data and Monte Carlo distributions as
1095the invariant phase space function
1096$f=\frac{d\sigma}{pdE}$\ depending on the variable
1097$k=\frac{p+E_{\rm{kin}}}{2}$\ as defined in equation~(\ref{k}).
1098
1099Spectra on $^{9}$Be, $^{12}$C, $^{28}$Si ($^{27}$Al for secondary
1100neutrons), $^{59}$Co ($^{64}$Cu for secondary neutrons), and
1101$^{181}$Ta\ are shown in Figs.~\ref{be0405}\ through~\ref{ta73108}.
1102The data are well-described, including the total energy spent in the
1103reaction to yield the particular type of fragments.
1104
1105The evaporation process for nucleons is also well-described.  It is
1106exponential in $k$, and looks especially impressive for Si/Al and
1107Co/Cu data, where the Coulomb barrier is low, and one can see proton
1108evaporation as a continuation of the evaporation spectra from
1109secondary neutrons. This way the exponential behavior of the
1110evaporation process can be followed over 3 orders of
1111magnitude. Clearly seen is\ the\ transition region at\ \ $k \approx
111290$\ MeV\ \ (kinetic energy $15-20$\ MeV)\ \ between the quark-level
1113hadronization process and the hadron-level evaporation process. For
1114light target nuclei the evaporation process becomes much less
1115prominent.
1116
1117The $^{6}$Li spectrum on a carbon target exhibits an interesting regularity
1118when plotted as a function of $k$: it practically coincides with the
1119spectrum of $^{4}$He fragments, and shows exponential behavior in a
1120wide range of $k$, corresponding to a few orders of magnitude in the
1121invariant cross section.  To keep the figure readable, the $^{6}$Li
1122spectrum generated by CHIPS was not plotted. It coincides with the
1123$^{4}$He spectrum at $k > 200$\ MeV, and under-estimates lithium
1124emission at lower energies, similarly to the $^{3}$He and tritium data.
1125
1126Between the region where hadron-level processes dominate and the
1127kinematic limit, all hadronic spectrum slopes become similar when plotted
1128as a function of $k$. In addition to this general behavior there is
1129the effect of strong proton-neutron splitting. For protons and neutrons
1130it reaches almost an order of magnitude. To model such splitting in
1131the CHIPS generator, the mechanism of ``isotopic focusing'' was used,
1132which locally transfers the negative charge from the pion to the first
1133radiated nuclear fragment.
1134
1135\begin{table}
1136\caption{Clusterization parameters}
1137\label{tab:1}
1138\begin{tabular}{llllll}
1139\hline\noalign{\smallskip}
1140& $^{9}$Be & $^{12}$C & $^{28}$Si & $^{59}$Co & $^{181}$Ta \\
1141\noalign{\smallskip}\hline\noalign{\smallskip}
1142$\varepsilon_{1}$ & 0.45 & 0.40 & 0.35 & 0.33 & 0.33 \\
1143$\varepsilon_{2}$ & 0.15 & 0.15 & 0.05 & 0.03 & 0.02 \\
1144$\omega $ & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 \\
1145\noalign{\smallskip}\hline
1146\end{tabular}
1147\end{table}
1148
1149Thus, the model qualitatively describes all typical features of the
1150pion capture process. The question is what can be extracted from the
1151experimental data with this tool. The clusterization parameters are
1152listed in Table~\ref{tab:1}. No formal fitting procedure has been
1153performed. A balanced qualitative agreement with all data was used to
1154tune the parameters. The difference between the $\frac{\varepsilon
1155_{2}}{\varepsilon _{1}}$\ ratio and the parameter $\omega$\ (which is
1156the same for all nuclei) is an indication that there is a
1157phase transition between the gas phase and the liquid phase of the
1158nucleus. The large value of the parameter $\omega$, determining the
1159average size of a nuclear cluster, is critical in describing
1160the model spectra
1161at large $k$, where the fragment spectra approach the kinematic
1162limits.
1163
1164Using the same parameters of clusterization, the $\gamma$\ absorption
1165data \cite{Ryckbosch} on Al and Ca nuclei were compared in
1166Fig.~\ref{gam62}) to the CHIPS results. One can see that the
1167spectra of secondary protons and deuterons are qualitatively described
1168by the CHIPS model.
1169
1170\begin{figure}[tbp]
1171% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/be0405k.eps, height=4.5in, width=4.5in}}
1172%\resizebox{1.00\textwidth}{!}
1173%{
1174\includegraphics[angle=0,scale=0.6]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/be0405k.eps}
1175%\includegraphics[angle=0,scale=0.6]{plots/be0405k.eps}
1176%}
1177\caption{\protect{Comparison of the CHIPS model results with
1178experimental data on proton, neutron, and nuclear fragment production
1179in the capture of negative pions on $^9$Be.
1180Proton~\cite{MIPHI} and neutron~\cite{Cernigoi}\ experimental spectra
1181are shown in the upper left panel by open circles and open squares,
1182respectively. The model calculations are shown by the two
1183corresponding solid lines. The same arrangement
1184is used to present $^{3}$He~\cite{MIPHI}
1185and tritium~\cite{MIPHI}
1186spectra in the lower left panel. Deuterium~\cite{MIPHI} 
1187and $^{4}$He~\cite{MIPHI} spectra are
1188shown in the right panels of the figure by open squares
1189and lines (CHIPS model). The average kinetic
1190energy carried away by each nuclear fragment is shown in the panels
1191by the two numbers: first is the average calculated using the
1192experimental data shown; second is the model result.}}
1193\label{be0405}
1194\end{figure}
1195
1196\begin{figure}[tbp]
1197% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/c0606k.eps, height=4.5in, width=4.5in}}
1198%\resizebox{1.00\textwidth}{!}
1199%{
1200\includegraphics[angle=0,scale=0.6]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/c0606k.eps}
1201%\includegraphics[angle=0,scale=0.6]{plots/c0606k.eps}
1202%}
1203\caption{\protect{Same as in Figure~\ref{be0405}, for
1204pion capture on $^{12}$C. The experimental neutron spectrum
1205is taken from \cite{Madey}. In addition, the detailed data on
1206charged particle production, including the $^{6}$Li spectrum, taken from
1207Ref.~\cite{Mechtersheimer}, are superimposed on the plots as a series of
1208dots.}}
1209\label{c0606}
1210\end{figure}
1211
1212\begin{figure}[tbp]
1213% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/si1414k.eps, height=4.5in, width=4.5in}}
1214%\resizebox{1.00\textwidth}{!}
1215%{
1216\includegraphics[angle=0,scale=0.6]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/si1414k.eps}
1217%\includegraphics[angle=0,scale=0.6]{plots/si1414k.eps}
1218%}
1219\caption{\protect{Same as in Figure~\ref{be0405}, for
1220pion capture on $^{28}$Si nucleus. The experimental neutron spectrum
1221is taken from~\cite{Madey}, for the reaction on $^{27}$Al.}}
1222\label{si1414}
1223\end{figure}
1224
1225\begin{figure}[tbp]
1226% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/co2732k.eps, height=4.5in, width=4.5in}}
1227%\resizebox{1.00\textwidth}{!}
1228%{
1229\includegraphics[angle=0,scale=0.6]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/co2732k.eps}
1230%\includegraphics[angle=0,scale=0.6]{plots/co2732k.eps}
1231%}
1232\caption{\protect{Same as in Figure~\ref{be0405}, for
1233pion capture on $^{59}$Co. The experimental neutron spectrum
1234is taken from~\cite{Madey}, for the reaction on $^{64}$Cu.}}
1235\label{co2732}
1236\end{figure}
1237
1238\begin{figure}[tbp]
1239% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/ta73108k.eps, height=4.5in, width=4.5in}}
1240%\resizebox{1.00\textwidth}{!}
1241%{
1242\includegraphics[angle=0,scale=0.6]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/ta73108k.eps}
1243%\includegraphics[angle=0,scale=0.6]{plots/ta73108k.eps}
1244%}
1245\caption{\protect{Same as in Figure~\ref{be0405}, for
1246pion capture on $^{181}$Ta. The experimental neutron
1247spectrum is taken from~\cite{Madey}.}}
1248\label{ta73108}
1249\end{figure}
1250
1251\begin{figure}[tbp]
1252% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/gam62.eps, height=4.5in, width=4.5in}}
1253%\resizebox{0.70\textwidth}{!}
1254%{
1255\includegraphics[angle=0,scale=0.75]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/gam62.eps}
1256%\includegraphics[angle=0,scale=0.75]{plots/gam62.eps}
1257%}
1258\caption{\protect{Comparison of CHIPS model with
1259experimental data~\cite{Ryckbosch} on
1260proton and deuteron production at $90^{\circ}$ 
1261in photonuclear reactions on $^{27}$Al
1262and $^{40}$Ca at 59 -- 65 MeV. Open circles and solid squares represent the
1263experimental proton and deuteron spectra,
1264respectively. Solid
1265and dashed lines show the results of the corresponding CHIPS model
1266calculation. Statistical errors in the CHIPS results are not shown and
1267can be judged by the point-to-point variations in the lines. The
1268comparison is absolute, using the values of total
1269photonuclear cross section 3.6 mb for Al and 5.4 mb for Ca,
1270as given in Ref.~\cite{Ahrens}.
1271}}
1272\label{gam62}
1273\end{figure}
1274
1275The CHIPS model covers a wide spectrum of hadronic reactions with a
1276large number of degrees of freedom. In the case of nuclear reactions
1277the CHIPS generator helps to understand phenomena such as the
1278order-of-magnitude splitting of neutron and proton spectra, the high
1279yield of energetic nuclear fragments, and the emission of nucleons
1280which kinematically can be produced only if seven or more nucleons
1281are involved in the reaction.
1282
1283The CHIPS generator allows the extraction of collective parameters of
1284a nucleus such as clusterization. The qualitative conclusion based on
1285the fit to the experimental data is that most of the nucleons are
1286clusterized, at least in heavy nuclei.  The nuclear clusters can be
1287considered as drops of a liquid nuclear phase. The quark exchange
1288makes the phase space of quark-partons of each cluster common,
1289stretching the kinematic limits for particle production.
1290
1291The hypothetical quark exchange process is important not only for
1292nuclear clusterization, but also for the nuclear hadronization
1293process.  The quark exchange between the excited cluster (quasmon)
1294and a neighboring nuclear cluster, even at low excitation level,
1295operates with quark-partons at energies comparable with the nucleon
1296mass. As a result it easily reaches the kinematic limits of the
1297reaction, revealing the multi-nucleon nature of the process.
1298
1299Up to now the most under-developed part of the model has been the
1300initial interaction between projectile and target. That is why we
1301started with proton-antiproton annihilation and pion capture on
1302nuclei at rest, because the interaction cross section is not involved.
1303The further development of the model will require a better
1304understanding of the mechanism of the first interaction.  However,
1305we believe that even the basic model will be useful in the
1306understanding the nature of multi-hadron fragmentation.  Because
1307of the model's features, it is a suitable candidate for the hadron
1308production and hadron cascade parts of the newly developed event
1309generation and detector simulation Monte Carlo computer codes.
1310
1311\section[Modeling of real and virtual photon interactions]{Modeling of real and virtual photon interactions with nuclei below pion production threshold}
1312
1313In the example of
1314the photonuclear reaction discussed in the Appendix D, namely
1315the description of $90^{\circ}$ proton and deuteron spectra in
1316$A({\gamma},X)$ reactions at $E_{\gamma} = 59-65$ MeV, the assumption
1317on the initial Quasmon excitation mechanism was the same. The
1318description of the $90^{\circ}$ data was satisfactory, but the
1319generated data showed very little angular dependence, because the
1320velocity of the quasmons produced in the initial state was small,
1321and the fragmentation process was almost isotropic.  Experimentally,
1322the angular dependence of secondary protons in photo-nuclear reactions
1323is quite strong even at low energies (see, for example,
1324Ref.~\cite{Ryckebusch}). This is a challenging experimental fact which
1325is difficult to explain in any model. It's enough to say that if the
1326angular dependence of secondary protons in the $\gamma ^{40}$Ca
1327interaction at 60 MeV is analyzed in terms of relativistic boost, then
1328the velocity of the source should reach $0.33 c$; hence the mass
1329of the source should be less than pion mass. The main point of this
1330discussion is to show that the quark-exchange mechanism used in the
1331CHIPS model can not only model the clusterization of nucleons in nuclei
1332and hadronization of intranuclear excitations into nuclear fragments,
1333but it can also model complicated mechanisms of the interaction of
1334photons and hadrons in nuclear matter.
1335
1336In Ref. Appendix D a quark-exchange diagram was defined which
1337helps to keep track of the kinematics of the quark-exchange process
1338(see Fig.~1 in Apendix D). To apply the same diagram to
1339the first interaction of a photon with a nucleus, it is necessary to
1340assume that the quark-exchange process takes place in nuclei
1341continuously, even
1342without any external interaction. Nucleons with high momenta do not
1343leave the nucleus because of the lack of excess energy. The
1344hypothesis of the CHIPS model is that the quark-exchange forces
1345between nucleons \cite{NN QEX}\ continuously create clusters in normal
1346nuclei. Since a low-energy photon (below the pion production threshold)
1347cannot be absorbed by a free nucleon, other absorption mechanisms
1348involving more than one nucleon have to be used.
1349
1350The simplest scenario is photon absorption by a quark-parton in
1351the nucleon. At low energies and in vacuum this does not work because
1352there is no corresponding excited baryonic state. But in nuclear matter
1353it is possible to exchange this quark with a neighboring nucleon
1354or a nuclear cluster. The diagram for the process is shown in
1355Fig.~\ref{diagram1}. In this case the photon is absorbed by a
1356quark-parton from the parent cluster $\rm{PC}_1$, and then
1357the secondary nucleon or cluster $\rm{PC}_2$
1358absorbs the entire momentum of the quark and photon. The exchange
1359quark-parton $q$ restores the balance of color, producing the
1360final-state hadron F and the residual Quasmon RQ. The process looks like a
1361knockout of a quasi-free nucleon or cluster out of the nucleus. It should be
1362emphasized that in this scenario the CHIPS event generator
1363produces not only ``quasi-free'' nucleons but ``quasi-free'' fragments
1364as well. The yield of these quasi-free nucleons or fragments is
1365concentrated in the forward direction.
1366
1367The second scenario which provides for an angular dependence is the absorption
1368of the photon by a colored fragment ($\rm{CF}_2$ 
1369in Fig.~\ref{diagram2}). In this
1370scenario, both the primary quark-parton with momentum $k$ and the photon
1371with momentum $q_{\gamma}$ are absorbed by a parent cluster ($\rm{PC}_2$ in
1372Fig.~\ref{diagram2}), and the recoil quark-parton with momentum $q$
1373cannot fully compensate the momentum $k+q_{\gamma}$.
1374As a result the radiation of the
1375secondary fragment in the forward direction becomes more probable.
1376
1377In both cases the angular dependence is defined by the first act of
1378hadronization. Further fragmentation of the residual quasmon is
1379almost isotropic.
1380
1381\begin{figure}[tbp]
1382% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/diagram1.eps, height=2.5in, width=2.5in}}
1383%\resizebox{0.70\textwidth}{!}
1384%{
1385\includegraphics[angle=0,scale=0.6]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/diagram1.eps}
1386%\includegraphics[angle=0,scale=0.6]{plots/diagram1.eps}
1387%}
1388\caption{\protect{Diagram of photon absorption in the quark
1389exchange mechanism. $\rm{PC}_{1,2}$ stand for parent clusters
1390with bound masses
1391$\tilde{\mu}_{1,2}$, participating in the quark-exchange. $\rm{CF}_{1,2}$
1392stand for the colored nuclear fragments in the process of quark
1393exchange. F($\mu$) denotes the outgoing hadron with mass $\mu$ in the
1394final state. RQ is the residual Quasmon which carries the rest of the
1395excitation energy and momentum. $M_{\min}$ characterizes
1396its minimum mass defined by its quark content. Dashed lines indicate
1397colored objects. The photon is absorbed by a
1398quark-parton $k$ from the parent cluster $\rm{PC}_1$.
1399}}
1400\label{diagram1}
1401\end{figure}
1402
1403\begin{figure}[tbp]
1404%  \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/diagram2.eps, height=2.5in, width=2.5in}}
1405%\resizebox{0.70\textwidth}{!}
1406%{
1407\includegraphics[angle=0,scale=0.6]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/diagram2.eps}
1408%\includegraphics[angle=0,scale=0.6]{plots/diagram2.eps}
1409%}
1410\caption{\protect{Diagram of photon absorption in the
1411quark-exchange mechanism. The notation is the same as in
1412Fig.~\ref{diagram1}. The photon is absorbed by the colored fragment
1413$\rm{CF}_2$.
1414}}
1415\label{diagram2}
1416\end{figure}
1417
1418It was shown in Section \ref{annil} that the energy spectrum of quark
1419partons in a quasmon can be calculated as
1420\begin{equation}
1421\frac{dW}{k^{\ast }dk^{\ast }}\propto 
1422\left(1-\frac{2k^{\ast }}{M} \right)^{N-3}\label{spectrum_1III}
1423\end{equation}
1424where $k^{\ast }$ is the energy of the primary quark-parton in the
1425center-of-mass system of the quasmon, $M$\ is the mass of the quasmon.
1426The number $N$ of quark-partons in the quasmon can be calculated
1427from the equation
1428\begin{equation}
1429<M^{2}>=4\cdot N\cdot (N-1)\cdot T^{2}\label{temperatureIII}
1430\end{equation}
1431Here $T$ is the temperature of the system.
1432
1433In the first scenario of the $\gamma A$ interaction
1434(Fig.~\ref{diagram1}), because both interacting particles are massless,
1435we assumed that the cross section for the interaction of a photon with
1436a particular quark-parton is proportional to the charge of the
1437quark-parton squared, and inversely proportional to the mass of the
1438photon-parton system $s$, which can be calculated as
1439\begin{equation}
1440s=2\omega k(1-\cos (\theta _{k})).  \label{s}
1441\end{equation}
1442Here $\omega $\ is the energy of the photon, and $k$ is the energy of
1443the quark-parton in the laboratory system (LS):
1444\begin{equation}
1445k=k^{\ast }\cdot \frac{E_{N}+p_{N}\cdot \cos (\theta _{k})}{M_{N}}.
1446\end{equation}
1447For a virtual photon, equation~(\ref{s}) can be written as
1448\begin{equation}
1449s=2k(\omega -q_{\gamma}\cdot \cos (\theta _{k})),
1450\end{equation}
1451where $q_{\gamma}$ is the momentum of the virtual photon. In both cases
1452equation~(\ref{spectrum_1III}) transforms into
1453\begin{equation}
1454\frac{dW}{dk^{\ast }}\propto \left(1-\frac{2k^{\ast }}{M} \right)^{N-3},
1455\end{equation}
1456and the angular distribution in $\cos (\theta _{k})$\ converges to a
1457$\delta $-function. In the case of a real photon
1458$\cos (\theta _{k})=1$, and in the case of a virtual photon
1459$\cos (\theta _{k})=\frac{\omega }{q_{\gamma}}$.
1460
1461In the second scenario for the photon interaction
1462(Fig.~\ref{diagram2}) we assumed that both the photon and the primary
1463quark-parton, randomized according to
1464Eq.~(\ref{spectrum_1III}), enter the parent cluster $\rm{PC}_2$,
1465and after that the normal procedure of quark exchange
1466continues, in which the recoiling quark-parton $q$ returns
1467to the first cluster.
1468
1469An additional parameter in the model is the relative contribution of
1470both mechanisms. As a first approximation we assumed equal
1471probability, but in the future, when more detailed data are obtained,
1472this parameter can be adjusted.
1473
1474\begin{figure}[tbp]
1475% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/gam62.eps, height=4.5in, width=4.5in}}
1476%\resizebox{0.80\textwidth}{!}
1477%{
1478\includegraphics[angle=0,scale=0.75]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/gam62.eps}
1479%\includegraphics[angle=0,scale=0.75]{plots/gam62.eps}
1480%}
1481\caption{\protect{Comparison of the CHIPS model results (lines) with the
1482experimental data~\cite{Ryckbosch} on proton spectra at $90^{\circ}$ 
1483in the photonuclear reactions on $^{40}$Ca at 59--65 MeV (open
1484circles),
1485and proton spectra at $60^{\circ}$ (triangles) and $150^{\circ}$ 
1486(diamonds).
1487Statistical errors in the CHIPS results are not shown but
1488can be judged by the point-to-point variations in the lines. The
1489comparison is absolute, using the value of the total
1490photonuclear cross section of 5.4 mb for Ca, as given in Ref.~\cite{Ahrens}.
1491} }
1492\label{gam62III}
1493\end{figure}
1494
1495\begin{figure}[tbp]
1496% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/gamm_c0606_e123.eps, height=4.5in, width=4.5in}}
1497%\resizebox{0.80\textwidth}{!}
1498%{
1499\includegraphics[angle=0,scale=0.75]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/gamm_c0606_e123.eps}
1500%\includegraphics[angle=0,scale=0.75]{plots/gamm_c0606_e123.eps}
1501%}
1502\caption{\protect{Comparison of the CHIPS model results (lines) with the
1503experimental data~\cite{Harty} on
1504proton spectra at $57^{\circ}$, $77^{\circ}$, $97^{\circ}$,
1505$117^{\circ}$, and $127^{\circ}$
1506in the photonuclear reactions on $^{12}$C at 123 MeV (open
1507circles).  The value of the total photonuclear cross section was set to 1.8 mb.
1508}  }
1509\label{gam_123}
1510\end{figure}
1511
1512\begin{figure}[tbp]
1513% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/gamm_c0606_e151.eps, height=4.5in, width=4.5in}}
1514%\resizebox{0.80\textwidth}{!}
1515%{
1516\includegraphics[angle=0,scale=0.75]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/gamm_c0606_e151.eps}
1517%\includegraphics[angle=0,scale=0.75]{plots/gamm_c0606_e151.eps}
1518%}
1519\caption{\protect{Same as in Fig.~\ref{gam_123}, for the photon energy 151 MeV.}
1520}
1521\label{gam_151}
1522\end{figure}
1523
1524\begin{figure}[tbp]
1525% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/vgam_c0606k.eps, height=4.5in, width=4.5in}}
1526%\resizebox{0.80\textwidth}{!}
1527%{
1528\includegraphics[angle=0,scale=0.75]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/vgam_c0606k.eps}
1529%\includegraphics[angle=0,scale=0.75]{plots/vgam_c0606k.eps}
1530%}
1531\caption{\protect{Comparison of the CHIPS model results (line) with
1532the experimental data~\cite{Bates} (open circles) on the
1533proton spectrum measured in parallel kinematics in the
1534$^{12}$C(e,e$^{\prime}$p)\ reaction at an energy transfer equal to 210
1535MeV and momentum transfer equal to 585 MeV/$c$.  Statistical errors in
1536the CHIPS result are not shown but can be judged by the point-to-point
1537variations in the line.  The relative normalization is arbitrary.
1538}  }
1539\label{vgam}
1540\end{figure}
1541
1542We begin the comparison with the data on proton production in the
1543$^{40}$Ca$(\gamma,X)$\ reaction at $90^{\circ}$\ and 59--65 MeV
1544\cite{Ryckbosch}, and at $60^{\circ}$\ and $150^{\circ}$\ and 60 MeV
1545\cite{Abeele}.  We analyzed these data together to compare the angular
1546dependence generated by CHIPS with experimental data. The data are
1547presented as a function of the invariant inclusive cross section
1548$f=\frac{d\sigma }{p_{p}dE_{p}}$\ depending on the variable
1549$k=\frac{T_{p}+p_{p}}{2}$,
1550where $T_{p}$\ and $p_{p}$\ are the kinetic energy and momentum of the
1551secondary proton. As one can see from Fig.~\ref{gam62III}, the angular
1552dependence of the proton yield in photoproduction on $^{40}$Ca at
1553$60$ MeV is reproduced quite well by the CHIPS event generator.
1554
1555The second set of measurements that we use for the benchmark
1556comparison deals with the secondary proton yields in
1557$^{12}$C$(\gamma,X)$ reactions at 123 and 151 MeV \cite{Harty},
1558which is still below the pion production threshold on
1559a free nucleon. Inclusive spectra of protons have been measured in
1560$\gamma ^{12}$C reactions at $57^{\circ}$, $77^{\circ}$, $97^{\circ}$,
1561$117^{\circ}$, and $127^{\circ}$.
1562Originally, these data were presented as a function of
1563the missing energy. We present the data in Figs.~\ref{gam_123} 
1564and \ref{gam_151} together with CHIPS calculations in
1565the form of the invariant inclusive cross section dependent on $k$.
1566All parameters of the model such as temperature $T$ and parameters
1567of clusterization for the particular nucleus were the same as in
1568Appendix D, where pion capture spectra were fitted.
1569The agreement between the experimental data and the CHIPS model results
1570is quite remarkable. Both data and calculations show significant strength
1571in the proton yield cross section up to the kinematic limits of the
1572reaction. The angular distribution in the model is not as prominent as
1573in the experimental data, but agrees well qualitatively.
1574
1575Using the same parameters, we applied the CHIPS event generator to the
1576$^{12}$C(e,e$^{\prime }$p) reaction measured in Ref.\cite{Bates}. The
1577proton spectra were measured in parallel kinematics in the interaction
1578of virtual photons with energy $\omega = 210$ MeV and momentum
1579$q_{\gamma} = 585$ MeV/$c$. To account for the experimental conditions
1580in the CHIPS event generator, we have selected protons generated in
1581the forward direction with respect to the direction of the virtual
1582photon, with the relative angle $\Theta_{qp} < 6^{\circ}$.  The CHIPS
1583generated distribution and the experimental data are shown in
1584Fig.~\ref{vgam} in the form of the invariant inclusive cross section as a
1585function of $k$.  The CHIPS event generator works only with ground
1586states of nuclei so we did not expect any narrow peaks for
1587$^{1}p_{3/2}$-shell knockout or for other shells. Nevertheless we
1588found that the CHIPS event generator fills in the so-called
1589``$^{1}s_{1/2}$-shell knockout'' region, which is usually artificially
1590smeared by a Lorentzian~\cite{Lorentzian}.  In the regular
1591fragmentation scenario the spectrum of protons below $k = 300$ MeV is
1592normal; it falls down to the kinematic limit. The additional yield at
1593$k > 300$ MeV is a reflection of the specific first act of
1594hadronization with the quark exchange kinematics. The slope increase
1595with momentum is approximated well by the model, but it is obvious
1596that the yield close to the kinematic limit of the $2 \rightarrow 2$
1597reaction can only be described in detail if the excited states of the
1598residual nucleus are taken into account.
1599
1600The angular dependence of the proton yield in low-energy photo-nuclear
1601reactions is described in the CHIPS model and event generator. The
1602most important assumption in the description is the hypothesis of a
1603direct interaction of the photon with an asymptotically free quark in
1604the nucleus, even at low energies. This means that asymptotic freedom of
1605QCD and dispersion sum rules~\cite{sum_rules} can in some way be
1606generalized for low energies.  The knockout of a proton from a nuclear
1607shell or the homogeneous distributions of nuclear evaporation cannot
1608explain significant angular dependences at low energies.
1609
1610The same mechanism appears to be capable of modeling proton yields in
1611such reactions as the $^{16}$C(e,e$^{\prime }$p) reaction measured at MIT
1612Bates \cite{Bates}, where it was shown that the region of missing
1613energy above 50 MeV reflects ``two-or-more-particle knockout'' (or the
1614``continuum'' in terms of the shell model). The CHIPS model may help
1615to understand and model such phenomena.
1616
1617\section[Chiral invariant phase-space decay]{Chiral invariant phase-space decay in high energy hadron nuclear reactions}
1618
1619\noindent \qquad Chiral invariant phase-space decay can be used to
1620de-excite an excited hadronic system. This possibility can be exploited
1621to replace the intra-nuclear cascading after a high energy primary
1622interaction takes place. The basic assumption in this is that the energy
1623loss of the high energy hadron in nuclear matter is approximately
1624constant per unit path length (about 1 GeV/fm). This energy is extracted
1625from the soft part of the particle spectrum of the primary interaction,
1626and from particles with formation times that place them within the
1627nuclear boundaries.
1628
1629Several approaches of transfering this energy into quasmons were studied,
1630and comparisons with energy spectra of particles emitted in the backward
1631hemisphere were made for a range of materials. Best results were achieved
1632with a model that creates one quasmon per particle absorbed in the nucleus.
1633
1634
1635\section{Neutrino-nuclear interactions}
1636\label{numunuc}
1637
1638The simulation of DIS reactions includes reactions with high $Q^2$. The
1639first approximation of the $Q^2$-dependent photonuclear cross-sections
1640at high $Q^2$ was made in \cite{photNuc}, where the modified photonuclear
1641cross sections of virtual photons \cite{Electronuc} were used.  The
1642structure functions of protons and deuterons have been approximated in
1643CHIPS by the sum of
1644non-perturbative multiperipheral and non-perturbative direct
1645interactions of virtual photons with hadronic partons:
1646\begin{figure}[tbp]
1647% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/vgam_c0606k.eps, height=4.5in, width=4.5in}}
1648%\resizebox{0.80\textwidth}{!}
1649%{
1650\includegraphics[angle=0,scale=0.60]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/gabsa.eps}
1651%\includegraphics[angle=0,scale=0.60]{plots/gabsa.eps}
1652%}
1653\caption{
1654Fit of $\gamma A$ cross sections with different $H$ values. Data are
1655from \cite{photNuc}.
1656}
1657\label{gamC}
1658\end{figure}
1659\begin{equation}
1660F_2(x,Q^2)=[A(Q^2)\cdot x^{-\Delta(Q^2)}+B(Q^2)\cdot
1661x]\cdot(1-x)^{N(Q^2)-2},
1662\label{DIS}
1663\end{equation}
1664where $A(Q^2)=\bar{e^2_S}\cdot D\cdot U$, $B(Q^2)=\bar{e^2_V}\cdot(1-D)\cdot V$,
1665$\bar{e^2}_{V(p)}=\frac{1}{3}$, $\bar{e^2}_{V(d)}=\frac{5}{18}$,
1666$\bar{e^2_S}=\frac{1}{3}-\frac{\frac{1}{3}-\frac{5}{18}}{1+m^2_\phi/Q^2}
1667+\frac{\frac{1}{3}-\frac{5}{18}}{1+m^2_{J/\psi}/Q^2}-
1668\frac{\frac{1}{3}-\frac{19}{63}}{1+m^2_{\Upsilon}/Q^2}$,
1669$N=3+\frac{0.5}{\alpha_s(Q^2)}$,
1670$\alpha_s(Q^2)=\frac{4\pi}{\beta_0 ln(1+\frac{Q^2}{\Lambda^2})}$,
1671$\beta_0^{(n_f=3)}=9$, $\Lambda=200~MeV$,
1672$U=\frac{(3~C(Q^2)+N-3)\cdot\Gamma(N-\Delta)}
1673{N\cdot\Gamma(N-1)\cdot\Gamma(1-\Delta)}$, $V=3(N-1)$,
1674$D(Q^2)=H\cdot  S(Q^2)\left(1-\frac{1}{2}S(Q^2)\frac{\bar{e^2_V}}{\bar{e^2_S}}
1675\right)$,
1676$S={\left(1+\frac{m^2_\rho}{Q^2}\right)^{-\alpha_P(Q^2)}}$,
1677$\alpha_P=1+\Delta(Q^2)$, $\Delta=\frac{1+r}{12.5+2r}$,
1678$r=\left(\frac{Q^2}{1.66}\right)^{1/2}$, $C=\frac{1+f}{g\cdot (1+f/.24)}$,
1679$f=\left(\frac{Q^2}{0.08}\right)^2$, $g=1+\frac{Q^2}{21.6}$.
1680The parton distributions are normalized to the unit total momentum
1681fraction.
1682
1683\begin{figure}[tbp]
1684% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/vgam_c0606k.eps, height=4.5in, width=4.5in}}
1685%\resizebox{0.80\textwidth}{!}
1686%{
1687\includegraphics[angle=0,scale=0.60]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/f23nud.eps}
1688%\includegraphics[angle=0,scale=0.60]{plots/f23nud.eps}
1689%}
1690\caption{
1691  Fit of $f_{2d}(x,Q^2)$ (filled circles, solid lines) and
1692  $f_{3d}(x,Q^2)$ (open circles, dashed lines) structure functions
1693  measured by the WA25 experiment \cite{WA25}.
1694}
1695\label{nuD}
1696\end{figure}
1697
1698The photonuclear cross sections are calculated by the eikonal formula:
1699\begin{equation}
1700\sigma_\gamma^{tot}=\left[\frac{4\pi\alpha}{Q^2}F_2\left(\frac{Q^2}
1701{2M\nu},Q^2\right)\right]^{\nu=E}_{Q^2=0},
1702\label{eikonal}
1703\end{equation}
1704An example of the approximation is shown in Fig.~\ref{gamC}. One can
1705see that the hadronic resonances are ``melted'' in nuclear matter and
1706the multi-peripheral part of the cross section (high energy) is
1707shadowed.
1708
1709The differential cross section of the $(\nu,\mu)$ reaction was
1710approximated as
1711\begin{equation}
1712\frac{yd^2\sigma^{\nu,\bar\nu}}{dydQ^2}=\frac{G^2_F\cdot        M^4_W}{4\pi\cdot
1713(Q^2+M^2_W)^2}\left[c_1(y)\cdot f_2(x,Q^2)\pm c_2(y)\cdot xf_3(x,Q^2)\right],
1714\label{difsec}
1715\end{equation}
1716where $c_1(y)=2-2y+\frac{y^2}{1+R}$, $R=\frac{\sigma_L}{\sigma_T}$,
1717$c_2(y)=y(2-y)$. As $\bar{e^2_V}=\bar{e^2_S}=1$ in
1718Eq.\ref{DIS}, hence $f_2(x,Q^2)=\left[D\cdot U\cdot
1719x^{-\Delta}+(1-D)\cdot V\cdot x\right]\cdot(1-x)^{N-2}$,
1720$xf_3(x,Q^2)=\left[ D\cdot U_{f3}\cdot x^{-\Delta}
1721+(1-D)\cdot V\cdot x\right]\cdot(1-x)^{N-2}$, with
1722$D=H\cdot S(Q^2)\cdot\left(1-\frac{1}{2}S(Q^2)\right)$ and
1723$U_{f3}=\frac{3\cdot    C(Q^2)\cdot\Gamma(N-\Delta)}
1724{N\cdot\Gamma(N-1)\Gamma(1-\Delta)}$. The approximation is compared
1725with data in Fig.\ref{nuD} for deuterium \cite{WA25} and in
1726Fig.\ref{nuFe} for iron \cite{CDHSW,CCFR}. It must be emphasized
1727that the CHIPS parton distributions are the same as for
1728electromagnetic reactions.
1729
1730\begin{figure}[tbp]
1731% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/vgam_c0606k.eps, height=4.5in, width=4.5in}}
1732%\resizebox{0.80\textwidth}{!}
1733%{
1734\includegraphics[angle=0,scale=0.6]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/f23nufe.eps}
1735%\includegraphics[angle=0,scale=0.6]{plots/f23nufe.eps}
1736%}
1737\caption{
1738  Fit of $f_{2Fe}(x,Q^2)$ (filled markers, solid lines) and
1739  $f_{3Fe}(x,Q^2)$ (open markers, dashed lines) structure functions
1740  measured by the CDHSW \cite{CDHSW} (circles) and CCFR \cite{CCFR}
1741  (squares) experiments.
1742}
1743\label{nuFe}
1744\end{figure}
1745
1746For the $(\nu,\mu)$ amplitudes one can not apply the optical theorem,
1747To calculate the total cross sections, it is therefore necessary to
1748integrate the differential cross sections first over $x$ and then over
1749$Q^2$. For the $(\nu,\mu)$ reactions the differential cross section
1750can be integrated with good accuracy even for low energies because it
1751does not have the $\frac{1}{Q^4}$ factor of the boson propagator. The
1752quasi-elastic part of the total cross-section can be calculated for
1753$W<m_N+m_\pi$. The total $(\nu,\mu)$ cross-sections are shown in
1754Fig.\ref{totqe}(a,b). The dashed curve corresponds to the GRV \cite{GRV}
1755approximation of parton distributions and the dash-dotted curves
1756correspond to the KMRS \cite{KMRS} approximation. Neither approximation
1757fits low energies, because the perturbative calculations
1758give parton distributions only for $Q^2 > 1~GeV^2$. In \cite{Comby} an
1759attempt was made to freeze the DIS parton distributions at $Q^2=1$ and
1760to use them at low $Q^2$. The $W<1.4~GeV$ part of DIS was replaced by
1761the quasi-elastic and one pion production contributions, calculated on
1762the basis of the low energy models. The results of \cite{Comby} are
1763shown by the dotted lines. The nonperturbative CHIPS approximation
1764(solid curves) fits both total and quasi-elastic cross sections even at
1765low energies.
1766
1767\begin{figure}[tbp]
1768% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/vgam_c0606k.eps, height=4.5in, width=4.5in}}
1769%\resizebox{0.80\textwidth}{!}
1770%{
1771\includegraphics[angle=0,scale=0.60]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/numu_cs.eps}
1772%\includegraphics[angle=0,scale=0.60]{plots/numu_cs.eps}
1773%}
1774\caption{
1775 Fit of total (a,b) and quasi-elastic (c,d) cross-sections of
1776 $(\nu,\mu)$ reactions (Geant4 database). The solid line
1777 is the CHIPS approximation (for other lines see text).
1778}
1779\label{totqe}
1780\end{figure}
1781
1782The quasi-elastic $(\nu,\mu)$ cross sections are shown in
1783Fig.\ref{totqe}(c,d). The CHIPS approximation (solid line) is compared
1784with calculations made in \cite{Comby} (the dotted line) and the best
1785fit of the $V-A$ theory was made in \cite{VMA} (the dashed lines). One
1786can see that CHIPS gives reasonable agreement.
1787
1788The $Q^2$ spectra for each energy are known as an intermediate result
1789of the calculation of total or quasi-elastic cross sections. For the
1790quasi-elastic interactions ($W<m_N+m_\pi$) one can use $x=1$ and
1791simulate a binary reaction. In the final state the recoil nucleon has
1792some probability of interacting with the nucleus. If $W>m_N+m_\pi$ the
1793$Q^2$ value is randomized and therefore the $Q^2$ dependent
1794coefficients (the number of partons in non-perturbative phase space
1795$N$, the Pomeron intercept $\alpha_P$, the fraction of the direct
1796interactions, etc.) can be calculated. Then for fixed energy and
1797$Q^2$ the neutrino interaction with quark-partons (directly or through
1798the Pomeron ladder) can be randomized and the secondary parton
1799distribution can be calculated. In vacuum or in nuclear matter the
1800secondary partons are creating quasmons \cite{CHIPS1,CHIPS2} which
1801decay to secondary hadrons.
1802
1803\section{Conclusion.}
1804
1805\noindent \qquad For users who would like to improve the
1806interaction part of the CHIPS event generator for their own
1807specific reactions, some advice concerning data presentation
1808is useful.
1809
1810It is a good idea to use a normalized invariant function $\rho (k)$%
1811\[
1812\rho =\frac{2E\cdot d^{3}\sigma }{\sigma _{tot}\cdot d^{3}p}\propto \frac{%
1813d\sigma }{\sigma _{tot}\cdot pdE},
1814\]
1815where $\sigma _{tot}$\ is the total cross section of the reaction.
1816The simple rule, then, is to divide the distribution over the hadron
1817energy $E$ by the momentum and by the reaction cross section. The argument
1818$k$ can be calculated for any outgoing hadron or fragment as
1819\[
1820k=\frac{E+p-B\cdot m_{N}}{2},
1821\]
1822which is the energy of the primary quark-parton. Because the spectrum
1823of the quark-partons is universal for all the secondary hadrons or
1824fragments, the distributions over this parameter have a similar shape
1825for all the secondaries. They should differ only when the kinematic
1826limits are approached or in the evaporation region. This feature is
1827useful for any analysis of experimental data, independent of the CHIPS
1828model.
1829
1830% The released version of the CHIPS event generator is not perfect yet,
1831% so in case of an error it is necessary to distinguish between the error
1832% of the test program ({\bf CHIPStest.cc}) and the error in the body of
1833% the generator.  Usually the error printing contains the address of the
1834% routine, but sometimes the name is abbreviated so that instead of
1835% {\bf G4QEnvironment}, {\bf G4Quasmon}, or {\bf G4QNucleus}, one will
1836% find {\bf G4QE}, {\bf G4Q}, or {\bf G4QN}. The errors in
1837% {\bf CHIPStest.cc} can be easily analyzed. Even if sometimes energy or
1838% charge is not conserved, this check can be excluded in order to keep
1839% going. On the other hand, if the error is in the body it is difficult
1840% to fix. The normal procedure is to uncomment the flags of the debugging
1841% prints in the corresponding part of the source code and try to find out
1842% the reason. Anyway inform authors about the error. Do not forget to attach the
1843% {\bf CHIPStest.cc} and the {\bf chipstest.in} files.
1844
1845Some concluding remarks should be made about the parameters of the model.
1846The main parameter, the critical temperature T$_{c}$, should not be varied.
1847A large set of data confirms the value {\bf 180 MeV} while from the mass
1848spectrum of hadrons it can be found more precisely as 182 MeV. The
1849clusterization parameter is {\bf 4.} which is just about 4$\pi /3.$
1850If the quark exchange starts at the mean distance between baryons in the
1851dense part of the nucleus, then the radius of the clusterization sphere is
1852twice the ''the radius of the space occupied by the baryon''.
1853It gives 8 for the parameter, but the space occupied by the baryon can not
1854be spherical; only cubic subdivision of space is possible so the factor
1855$\pi/6 $ appears. But this is a rough estimate, so {\bf 4} or even {\bf 5} 
1856can be tried.  The surface parameter $fD$ varies slightly with $A$,
1857growing from 0 to 0.04. For the present CHIPS version the recommended
1858parameters for low energies are:
1859
1860\begin{tabular}{llllllllll}
1861{\bf A} & {\bf T} & {\bf s/u} & {\bf eta} & {\bf noP} & {\bf fN} & {\bf fD}
1862& {\bf Cp} & {\bf rM} & {\bf sA} \\ 
1863{\bf Li} & 180. & 0.1 & 0.3 & 223 & .4 & .00 & 4. & 1.0 & 0.4 \\ 
1864{\bf Be} & 180. & 0.1 & 0.3 & 223 & .4 & .00 & 4. & 1.0 & 0.4 \\ 
1865{\bf  C} & 180. & 0.1 & 0.3 & 223 & .4 & .00 & 4. & 1.0 & 0.4 \\ 
1866{\bf  O} & 180. & 0.1 & 0.3 & 223 & .4 & .02 & 4. & 1.0 & 0.4 \\ 
1867{\bf  F} & 180. & 0.1 & 0.3 & 223 & .4 & .03 & 4. & 1.0 & 0.4 \\ 
1868{\bf Al} & 180. & 0.1 & 0.3 & 223 & .4 & .04 & 4. & 1.0 & 0.4 \\ 
1869{\bf Ca} & 180. & 0.1 & 0.3 & 223 & .4 & .04 & 4. & 1.0 & 0.4 \\ 
1870{\bf Cu} & 180. & 0.1 & 0.3 & 223 & .4 & .04 & 4. & 1.0 & 0.4 \\ 
1871{\bf Ta} & 180. & 0.1 & 0.3 & 223 & .4 & .04 & 4. & 1.0 & 0.4 \\ 
1872{\bf  U} & 180. & 0.1 & 0.3 & 223 & .4 & .04 & 4. & 1.0 & 0.4
1873\end{tabular}
1874
1875The vacuum hadronization weight parameter can be bigger for light
1876nuclei and smaller for heavy nuclei, but $1.0$ is a good guess. The
1877s/u parameter is not yet tuned, as it demands strange particle
1878production data. A guess is that if there are as many $u\bar{u}$ 
1879and $d\bar{d}$ pairs in the reaction as in the $p\bar{p}$ 
1880interaction, the parameter can be 0.1. In other cases it is closer
1881to 0.3 as in other event generators. But it is bestnot to touch any
1882parameters for the first experience with the CHIPS event generator.
1883Only the incident momentum, the PDG code of the projectile, and the
1884CHIPS style PDG code of the target need be changed.
1885
1886
1887\section{Status of this document}
1888
188902.12.05 neutrino interactions section and figures added by M.V. Kossov \\
189026.04.03 first four sections re-written by D.H. Wright \\
189101.01.01 created by M.V. Kossov and H.P. Wellisch \\
1892
1893%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%****************************
1894
1895\begin{latexonly}
1896
1897\begin{thebibliography}{}
1898
1899% \bibitem{STAND_ALONE}  \noindent M. V. Kossov, Manual for the CHIPS
1900% event generator,High Energy Accelerator Research Organization (KEK)
1901% Internal 2000-17, February 2001, H/R
1902
1903\bibitem{Parton_Models} B. Andersson, G. Gustafson, G. Ingelman,
1904T. Sj\"{o}strand, Phys. Rep. {\textbf{97}} (1983) 31
1905
1906\bibitem{CHIPS1}  \noindent P. V. Degtyarenko, M. V. Kossov, and H.P.
1907Wellisch, Chiral invariant phase space event generator, I.
1908Nucleon-antinucleon annihilation at rest, Eur. Phys. J. A 8 (2000) 217.
1909
1910\bibitem{CHIPS2}  P. V. Degtyarenko, M. V. Kossov, and H. P. Wellisch,
1911Chiral invariant phase space event generator, II.Nuclear pion capture at
1912rest, Eur. Phys. J. A 9 (2000) 411.
1913
1914\bibitem{CHIPS3}  P. V. Degtyarenko, M. V. Kossov, and H. P. Wellisch,
1915Chiral invariant phase space event generator, III Photonuclear reactions
1916below $\Delta $(3,3) excitation, Eur. Phys. J. A 9, (2000) 421.
1917
1918\bibitem{hadronMasses}  M. V. Kossov, Chiral invariant phase space
1919                model, I Masses of hadrons, Eur. Phys. J. A 14 (2002) 265.
1920
1921\bibitem{Chiral_Bag} C.A.Z. Vasconcellos et al., Eur. Phys. J. C
1922{\textbf{4}} (1998) 115;
1923G.A. Miller, A.W. Thomas, S. Theberge, Phys. Lett. B {\textbf{91}} (1980)
1924192;
1925C.E. de Tar, Phys. Rev. D {\textbf{24}} (1981) 752;
1926M.A.B. B\'{e}g, G.T. Garvey, Comments Nucl. Part. Phys. {\textbf{18}}
1927(1988) 1
1928
1929\bibitem{GENBOD} F. James, \textit{Monte Carlo Phase Space}, CERN 68-15
1930(1968)
1931
1932\bibitem{Feynman-Wilson}  K.G. Wilson, Proc. Fourteenth Scottish
1933Universities Summer School in Physics (1973), eds R. L. Crawford, R.
1934Jennings (Academic Press, New York, 1974)
1935
1936\bibitem{CH.PDG}  Monte Carlo particle numbering scheme, in:
1937 Particle Data Group, \textit{Review of Particle Physics},
1938 Eur. Phys. J. C {\textbf{3}} (1998) 180
1939
1940\bibitem{Hagedorn} R. Hagedorn, Nuovo Cimento Suppl. {\textbf{3}}
1941                (1965) 147
1942
1943\bibitem{photNuc} M. V. Kossov, Approximation of photonuclear
1944                interaction cross-sections, Eur. Phys. J. A 14 (2002) 377.
1945
1946\bibitem{GEANT4}  S. Giani et al., Geant4: Object Oriented Toolkit for
1947Simulation in HEP, LCB status report CERN/LHCC/98-44, November 1998.
1948
1949\bibitem{MC2000}  J. P. Wellisch, On hadronic models in GEANT4, Program
1950and Book of Abstracts.International Conference on Advanced Monte Carlo for
1951Radiation Physics, Particle Transport Simulation and Applications, 23-26
1952October 2000, IST,Lisbon, Portugal, p. 330.
1953
1954\bibitem{Duality} Yu.L. Dokshitzer, V.S. Fadin and V.A. Khoze,
1955Phys. Lett. {\textbf{115B}} (1982) 242L
1956
1957\bibitem{JETSET} T. Sj\"{o}strand, Comp. Phys. Comm. {\textbf{92}} (1994)
195874
1959
1960\bibitem{OZI}  S. Ocubo, Phys. Lett. {\textbf{5}} (1963) 165;
1961G. Zweig, CERN Preprint 8419/TH-412 (1964);
1962I. Iizuka, Progr. Theor. Phys. Suppl. {\textbf{37}} (1966) 21
1963
1964\bibitem{OZI_violation} V.E. Markushin, M.P. Locher,
1965Eur. Phys. J. A {\textbf{1}} (1998) 91
1966
1967\bibitem{pispectrum} J. Sedlak and V. Simak, Sov. J. Part. Nucl.
1968{\textbf{19}} (1988) 191
1969
1970\bibitem{pap_exdata}  C. Amsler, Rev.Mod.Phys. {\textbf{70}} (1998) 1293;
1971C. Amsler and F. Myher, Annu. Rev. Nucl. Part. Sci. {\textbf{41}} (1991)
1972219
1973
1974\bibitem{POPCORN} B. Andersson, G. Gustafson, T. Sj\"{o}strand, Nucl.
1975Phys. B {\textbf{197}}(1982) 45;
1976B. Andersson, G. Gustafson, T. Sj\"{o}strand, Physica Scripta {\textbf{32}}
1977(1985) 574
1978
1979\bibitem{Energy_Dep} P. Gregory et al., Nucl. Phys. B {\textbf{102}} (1976)
1980189
1981
1982\bibitem{K_parameter}  M.V. Kossov and L.M. Voronina, Preprint ITEP
1983165-84, Moscow (1984)
1984
1985\bibitem{FNAL}  V.I.~Efremenko et al., Phys. Rev. C \textbf{22} (1980) 700.
1986
1987\bibitem{FAS}  S.V~Boyarinov et al., Phys. At. Nucl. \textbf{56}
1988(1993) 72.
1989
1990\bibitem{TPC} P.V. Degtyarenko et al., Phys. Rev. C {\textbf{50}} (1994)
1991R541
1992
1993\bibitem{NN QEX}  K.~Maltman and N.~Isgur, Phys. Rev. D \textbf{29} (1984) 952.
1994
1995\bibitem{Kp QUEX}  K.~Maltman and N.~Isgur, Phys. Rev. D \textbf{34} (1986)
19961372.
1997
1998\bibitem{EMC}  P.~Hoodbhoy and R.~J.~Jaffe, Phys. Rev. D \textbf{35}
1999(1987) 113.
2000
2001\bibitem{QUEX}  N.~Isgur, Nucl. Phys. \textbf{A497} (1989) 91.
2002
2003%%%%%%%%%%%%%%%
2004
2005\bibitem{massSpectr}  M. V. Kossov, CHIPS: masses of hadrons. (be
2006published).
2007
2008\bibitem{eqPhotons}  L. D. Landau, E. M. Lifshitz, ``Course of
2009Theoretical Physics'' v.4, part 1, ``Relativistic Quantum Theory'',
2010Pergamon Press, paragraph 96, The method of equivalent photons.
2011
2012\bibitem{Shadowing}  J. Eickmeyer et al. Phys. Rev. Letters {\bf 36 }(1976)
2013289-291.
2014
2015\bibitem{Guilo}  D'Agostini, Hard Scattering Process in High Energy
2016Gamma-Induced Reactions, DESY 94-169, September 1994.
2017
2018\bibitem{Electronuc}  F. W. Brasse et al. Nuclear Physics {\bf B39 }(1972)
2019421-431.
2020
2021\bibitem{WA25} D. Allasia {\textit {et~al}}, Z. Phys C {\textbf{28}},
2022                321 (1985)
2023
2024\bibitem{CDHSW} P. Berg {\textit {et~al}}, Z. Phys C {\textbf{49}},
2025                187 (1991)
2026
2027\bibitem{CCFR} E. Oltman {\textit {et~al}}, Z. Phys C {\textbf{53}},
2028                51 (1992)
2029
2030\bibitem{GRV} M. Gl\"uck {\textit {et~al}}, Z. Phys. C {\textbf{48}},
2031                471 (1990)
2032
2033\bibitem{KMRS} J. Kviecinski {\textit {et~al}}, Phys. Rev. D {\textbf{42}},
2034                3645 (1990)
2035
2036\bibitem{Comby} P. Lipari {\textit {et~al}}, Phys. Rev. Let. {\textbf{74}},
2037                4384 (1995)
2038
2039\bibitem{VMA} S.V. Belikov {\textit {et~al}}, Z. Phys. A {\textbf{320}},
2040                625 (1985)
2041
2042\bibitem{PenCB}  A. Lepretre et al. Nuclear Physics {\bf A390 }(1982)
2043221-239.
2044
2045\bibitem{DINREG} P.V. Degtyarenko and M.V. Kossov, Preprint ITEP
204611-92, Moscow (1992)
2047
2048\bibitem{ARGUS} P.V. Degtyarenko et al., Z. Phys. A - Atomic Nuclei,
2049{\textbf{335}} (1990) 231
2050
2051\bibitem{GDINR} P.V. Degtyarenko, \textit{Applications of the photonuclear
2052fragmentation model to radiation protection problems}, in:
2053Proceedings of Second Specialist's Meeting on Shielding Aspects of
2054Accelerators, Targets and Irradiation Facilities (SATIF-2), CERN,
2055Geneva, Switzerland, 12-13 October 1995, published by Nuclear Energy
2056Agency, Organization for Economic Co-operation and Development, pages
205767 - 91 (1996)
2058
2059\bibitem{sum_rules}  C. Bernard, A. Duncan, J. LoSecco, and S. Weinberg,
2060Phys. Rev. D \textbf{12} (1975) 792;
2061
2062 E. Poggio, H. Quinn, and S. Weinberg, Phys. Rev. D \textbf{13} (1976) 1958
2063
2064\bibitem{MIPHI}  A.~I.~Amelin et al., ``Energy spectra of charged particles
2065in the reaction of $\pi^-$ absorption at rest by $^{6,7}$Li, $^{9}$Be, $%
2066^{10,11}$B, $^{12}$C, $^{28}$Si, $^{40}$Ca, $^{59}$Co, $^{93}$Nb, $%
2067^{114,117,120,124}$Sn, $^{169}$Tm, $^{181}$Ta and $^{209}$Bi nuclei'',
2068Moscow Physics and Engineering Institute Preprint No. 034-90, Moscow, 1990.
2069
2070\bibitem{Mechtersheimer}  G.~Mechtersheimer et al., Nucl. Phys.
2071                          \textbf{A324} (1979) 379.
2072
2073\bibitem{Cernigoi}  C.~Cernigoi et al., Nucl. Phys. \textbf{A456} (1986) 599.
2074
2075\bibitem{Madey}  R.~Madey et al., Phys. Rev. C \textbf{25} (1982) 3050.
2076
2077\bibitem{Ryckbosch}  D.~Ryckbosch et al., Phys. Rev. C \textbf{42} (1990) 444.
2078
2079\bibitem{Ahrens}  J.~Ahrens et al.,  Nucl. Phys. \textbf{A446} (1985) 229c.
2080
2081\bibitem{Ryckebusch} Jan~Ryckebusch et al., Phys. Rev. C \textbf{49} (1994)
20822704.
2083
2084\bibitem{Abeele} C.~Van~den~Abeele; private communication cited
2085in the reference: Jan~Ryckebusch et al., Phys. Rev. C \textbf{49} (1994)
20862704.
2087
2088\bibitem{Harty} P.D.~Harty et al. (unpublished);
2089private communication cited
2090in the reference: Jan~Ryckebusch et al., Phys. Rev. C \textbf{49} (1994)
20912704.
2092
2093\bibitem{Bates}  L.B.~Weinstein et al., Phys. Rev. Lett. \textbf{64} (1990)
20941646.
2095
2096\bibitem{Lorentzian}  J.P.~Jeukenne and C.~Mahaux, Nucl. Phys. A \textbf{394}
2097(1983) 445.
2098
2099\end{thebibliography}
2100
2101\end{latexonly}
2102
2103\begin{htmlonly}
2104
2105\section{Bibliography}
2106
2107\begin{enumerate}
2108% \bibitem{STAND_ALONE}  \noindent M. V. Kossov, Manual for the CHIPS
2109% event generator,High Energy Accelerator Research Organization (KEK)
2110% Internal 2000-17, February 2001, H/R
2111
2112\item B. Andersson, G. Gustafson, G. Ingelman,
2113T. Sj\"{o}strand, Phys. Rep. {\textbf{97}} (1983) 31
2114
2115\item  \noindent P. V. Degtyarenko, M. V. Kossov, and H.P.
2116Wellisch, Chiral invariant phase space event generator, I.
2117Nucleon-antinucleon annihilation at rest, Eur. Phys. J. A {\bf 8}, 217-222
2118(2000).
2119
2120\item P. V. Degtyarenko, M. V. Kossov, and H. P. Wellisch,
2121Chiral invariant phase space event generator, II.Nuclear pion capture at
2122rest, Eur. Phys. J. A 9, (2001).
2123
2124\item P. V. Degtyarenko, M. V. Kossov, and H. P. Wellisch,
2125Chiral invariant phase space event generator, III Photonuclear reactions
2126below $\Delta $(3,3) excitation, Eur. Phys. J. A 9, (2001).
2127
2128\item C.A.Z. Vasconcellos et al., Eur. Phys. J. C
2129{\textbf{4}} (1998) 115;
2130G.A. Miller, A.W. Thomas, S. Theberge, Phys. Lett. B {\textbf{91}} (1980)
2131192;
2132C.E. de Tar, Phys. Rev. D {\textbf{24}} (1981) 752;
2133M.A.B. B\'{e}g, G.T. Garvey, Comments Nucl. Part. Phys. {\textbf{18}}
2134(1988) 1
2135
2136\item F. James, \textit{Monte Carlo Phase Space}, CERN 68-15
2137(1968)
2138
2139\item K.G. Wilson, Proc. Fourteenth Scottish
2140Universities Summer School in Physics (1973), eds R. L. Crawford, R.
2141Jennings (Academic Press, New York, 1974)
2142
2143\item  Monte Carlo particle numbering scheme, in:
2144 Particle Data Group, \textit{Review of Particle Physics},
2145 Eur. Phys. J. C {\textbf{3}} (1998) 180
2146
2147\item R. Hagedorn, Nuovo Cimento Suppl. {\textbf{3}} (1965) 147
2148
2149\item S. Giani et al., Geant4: Object Oriented Toolkit for
2150Simulation in HEP, LCB status report CERN/LHCC/98-44, November 1998.
2151
2152\item J. P. Wellisch, On hadronic models in GEANT4, Program
2153and Book of Abstracts.International Conference on Advanced Monte Carlo for
2154Radiation Physics, Particle Transport Simulation and Applications, 23-26
2155October 2000, IST,Lisbon, Portugal, p. 330.
2156
2157\item Yu.L. Dokshitzer, V.S. Fadin and V.A. Khoze,
2158Phys. Lett. {\textbf{115B}} (1982) 242L
2159
2160\item T. Sj\"{o}strand, Comp. Phys. Comm. {\textbf{92}} (1994)
216174
2162
2163\item S. Ocubo, Phys. Lett. {\textbf{5}} (1963) 165;
2164G. Zweig, CERN Preprint 8419/TH-412 (1964);
2165I. Iizuka, Progr. Theor. Phys. Suppl. {\textbf{37}} (1966) 21
2166
2167\item V.E. Markushin, M.P. Locher,
2168Eur. Phys. J. A {\textbf{1}} (1998) 91
2169
2170\item J. Sedlak and V. Simak, Sov. J. Part. Nucl.
2171{\textbf{19}} (1988) 191
2172
2173\item C. Amsler, Rev.Mod.Phys. {\textbf{70}} (1998) 1293;
2174C. Amsler and F. Myher, Annu. Rev. Nucl. Part. Sci. {\textbf{41}} (1991)
2175219
2176
2177\item B. Andersson, G. Gustafson, T. Sj\"{o}strand, Nucl.
2178Phys. B {\textbf{197}}(1982) 45;
2179B. Andersson, G. Gustafson, T. Sj\"{o}strand, Physica Scripta {\textbf{32}}
2180(1985) 574
2181
2182\item P. Gregory et al., Nucl. Phys. B {\textbf{102}} (1976)
2183189
2184
2185\item M.V. Kossov and L.M. Voronina, Preprint ITEP
2186165-84, Moscow (1984)
2187
2188\item V.I.~Efremenko et al., Phys. Rev. C \textbf{22} (1980) 700.
2189
2190\item S.V~Boyarinov et al., Phys. At. Nucl. \textbf{56}
2191(1993) 72.
2192
2193\item P.V. Degtyarenko et al., Phys. Rev. C {\textbf{50}} (1994)
2194R541
2195
2196\item K.~Maltman and N.~Isgur, Phys. Rev. D \textbf{29} (1984) 952.
2197
2198\item K.~Maltman and N.~Isgur, Phys. Rev. D \textbf{34} (1986)
21991372.
2200
2201\item P.~Hoodbhoy and R.~J.~Jaffe, Phys. Rev. D \textbf{35}
2202(1987) 113.
2203
2204\item N.~Isgur, Nucl. Phys. \textbf{A497} (1989) 91.
2205
2206%%%%%%%%%%%%%%%
2207
2208\item M. V. Kossov, CHIPS: masses of hadrons. (be
2209published).
2210
2211\item L. D. Landau, E. M. Lifshitz, ``Course of
2212Theoretical Physics'' v.4, part 1, ``Relativistic Quantum Theory'',
2213Pergamon Press, paragraph 96, The method of equivalent photons.
2214
2215\item J. Eickmeyer et al. Phys. Rev. Letters {\bf 36 }(1976)
2216289-291.
2217
2218\item D'Agostini, Hard Scattering Process in High Energy
2219Gamma-Induced Reactions, DESY 94-169, September 1994.
2220
2221\item  F. W. Brasse et al. Nuclear Physics {\bf B39 }(1972)
2222421-431.
2223
2224\item A. Lepretre et al. Nuclear Physics {\bf A390 }(1982)
2225221-239.
2226
2227\item P.V. Degtyarenko and M.V. Kossov, Preprint ITEP
222811-92, Moscow (1992)
2229
2230\item P.V. Degtyarenko et al., Z. Phys. A - Atomic Nuclei,
2231{\textbf{335}} (1990) 231
2232
2233\item P.V. Degtyarenko, \textit{Applications of the photonuclear
2234fragmentation model to radiation protection problems}, in:
2235Proceedings of Second Specialist's Meeting on Shielding Aspects of
2236Accelerators, Targets and Irradiation Facilities (SATIF-2), CERN,
2237Geneva, Switzerland, 12-13 October 1995, published by Nuclear Energy
2238Agency, Organization for Economic Co-operation and Development, pages
223967 - 91 (1996)
2240
2241\item C. Bernard, A. Duncan, J. LoSecco, and S. Weinberg,
2242Phys. Rev. D \textbf{12} (1975) 792;
2243
2244 E. Poggio, H. Quinn, and S. Weinberg, Phys. Rev. D \textbf{13} (1976) 1958
2245
2246\item A.~I.~Amelin et al., ``Energy spectra of charged particles
2247in the reaction of $\pi^-$ absorption at rest by $^{6,7}$Li, $^{9}$Be, $%
2248^{10,11}$B, $^{12}$C, $^{28}$Si, $^{40}$Ca, $^{59}$Co, $^{93}$Nb, $%
2249^{114,117,120,124}$Sn, $^{169}$Tm, $^{181}$Ta and $^{209}$Bi nuclei'',
2250Moscow Physics and Engineering Institute Preprint No. 034-90, Moscow, 1990.
2251
2252\item G.~Mechtersheimer et al., Nucl. Phys.
2253                          \textbf{A324} (1979) 379.
2254
2255\item C.~Cernigoi et al., Nucl. Phys. \textbf{A456} (1986) 599.
2256
2257\item R.~Madey et al., Phys. Rev. C \textbf{25} (1982) 3050.
2258
2259\item D.~Ryckbosch et al., Phys. Rev. C \textbf{42} (1990) 444.
2260
2261\item J.~Ahrens et al.,  Nucl. Phys. \textbf{A446} (1985) 229c.
2262
2263\item Jan~Ryckebusch et al., Phys. Rev. C \textbf{49} (1994)
22642704.
2265
2266\item C.~Van~den~Abeele; private communication cited
2267in the reference: Jan~Ryckebusch et al., Phys. Rev. C \textbf{49} (1994)
22682704.
2269
2270\item P.D.~Harty et al. (unpublished);
2271private communication cited
2272in the reference: Jan~Ryckebusch et al., Phys. Rev. C \textbf{49} (1994)
22732704.
2274
2275\item L.B.~Weinstein et al., Phys. Rev. Lett. \textbf{64} (1990)
22761646.
2277
2278\item J.P.~Jeukenne and C.~Mahaux, Nucl. Phys. A \textbf{394}
2279(1983) 445.
2280
2281\end{enumerate}
2282
2283\end{htmlonly}
2284
2285%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2286%
2287%\end{document}
Note: See TracBrowser for help on using the repository browser.