source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/hadronic/theory_driven/ChiralInvariantPhaseSpace/PhotoElectroNucCrsSctn.tex @ 1211

Last change on this file since 1211 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 20.5 KB
Line 
1\chapter[Cross-sections in Photonuclear/Electronuclear Reactions]{Cross-sections in Photonuclear and Electronuclear Reactions}
2\section{Approximation of Photonuclear Cross Sections.}
3
4The photonuclear cross sections parameterized in the
5{\tt G4PhotoNuclearCrossSection} class cover all incident photon energies from
6the hadron production threshold upward.  The parameterization is subdivided
7into five energy regions, each corresponding to the physical process that
8dominates it.
9
10\begin{itemize}
11
12\item The Giant Dipole Resonance (GDR) region, depending on the nucleus,
13      extends from 10 Mev up to 30 MeV.  It usually consists of one large
14      peak, though for some nuclei several peaks appear.
15 
16\item The ``quasi-deuteron'' region extends from around 30 MeV up to the
17      pion threshold and is characterized by small cross sections and a broad,
18      low peak.
19
20\item The $\Delta$ region is characterized by the dominant peak in the
21      cross section which extends from the pion threshold to 450 MeV.
22
23\item The Roper resonance region extends from roughly 450 MeV to 1.2 GeV.
24      The cross section in this region is not strictly identified with the
25      real Roper resonance because other processes also occur in this region. 
26
27\item The Reggeon-Pomeron region extends upward from 1.2 GeV.
28
29\end{itemize}
30
31\noindent 
32In the GEANT4 photonuclear data base there are about 50 nuclei for which the
33photonuclear absorption cross sections have been measured in the above
34energy ranges.  For low energies this number could be enlarged, because for
35heavy nuclei the neutron photoproduction cross section is close to the total
36photo-absorption cross section.  Currently, however, 14 nuclei are used in
37the parameterization: $^1$H, $^2$H, $^4$He, $^6$Li, $^7$Li, $^9$Be,
38$^{12}$C, $^{16}$O, $^{27}$Al, $^{40}$Ca, Cu, Sn, Pb, and U.  The resulting
39cross section is a function of $A$ and $e = log(E_\gamma)$, where $E_\gamma$ 
40is the energy of the incident photon.  This function is the sum of the
41components which parameterize each energy region. \\
42
43\noindent
44The cross section in the GDR region can be described as the sum of two
45peaks,
46\begin{equation}
47GDR(e) = th(e,b_1,s_1)\cdot exp(c_1-p_1\cdot e) +
48         th(e,b_2,s_2)\cdot exp(c_2-p_2\cdot e) .
49\end{equation}
50The exponential parameterizes the falling edge of the resonance which
51behaves like a power law in $E_\gamma$.  This behavior is expected from 
52the CHIPS model, which includes the nonrelativistic phase space of nucleons
53to explain evaporation.  The function
54\begin{equation}
55th(e,b,s) = \frac{1}{1+exp(\frac{b-e}{s})} ,
56\end{equation}
57describes the rising edge of the resonance.  It is the
58nuclear-barrier-reflection function and behaves like a threshold, cutting off
59the exponential.  The exponential powers $p_1$ and $p_2$ are
60
61\begin{eqnarray*}
62 p_1 = 1, p_2 = 2 \mbox{\hspace*{1mm} for \hspace*{7mm} $A < 4$ }\\ 
63 p_1 = 2, p_2 = 4 \mbox{\hspace*{1mm} for \hspace*{1mm} $4 \le A < 8$ }\\
64 p_1 = 3, p_2 = 6 \mbox{\hspace*{1mm} for $8 \le A < 12$} \\
65 p_1 = 4, p_2 = 8 \mbox{\hspace*{1mm} for \hspace*{6mm} $A \ge 12$} .
66\end{eqnarray*}
67 
68\noindent
69The $A$-dependent parameters $b_i$, $c_i$ and $s_i$ were found for each of
70the 14 nuclei listed above and interpolated for other nuclei. \\
71
72\noindent
73The $\Delta$ isobar region was parameterized as
74\begin{equation}
75\Delta (e,d,f,g,r,q)=\frac{d\cdot th(e,f,g)}{1+r\cdot (e-q)^2},
76\label{Isobar}
77\end{equation}
78where $d$ is an overall normalization factor.  $q$ can be interpreted as the
79energy of the $\Delta$ isobar and $r$ can be interpreted as the inverse of
80the $\Delta$ width.  Once again $th$ is the threshold function.  The
81$A$-dependence of these parameters is as follows:
82
83\begin{itemize}
84\item  $d=0.41\cdot A$ (for $^1$H it is 0.55, for $^2$H it is 0.88),
85which means that the $\Delta$ yield is proportional
86to $A$;
87
88\item  $f=5.13-.00075\cdot A$$exp(f)$ shows how the pion threshold depends
89on $A$.  It is clear that the threshold becomes 140 MeV only for uranium;
90for lighter nuclei it is higher.
91
92\item  $g = 0.09$ for $A \ge 7$ and 0.04 for $A < 7$;
93
94\item  $q=5.84-\frac{.09}{1+.003\cdot A^2}$, which means that the ``mass''
95of the $\Delta$ isobar moves to lower energies;
96
97\item $r=11.9 - 1.24\cdot log(A)$$r$ is 18.0 for $^1$H.
98The inverse width becomes smaller with $A$, hence the width increases.
99
100\end{itemize}
101The $A$-dependence of the $f$, $q$ and $r$ parameters is due to the
102$\Delta+N\rightarrow N+N$ reaction, which can take place in the nuclear
103medium below the pion threshold. \\
104
105\noindent
106The quasi-deuteron contribution was parameterized with the same form as the
107$\Delta$ contribution but without the threshold function:
108\begin{equation}
109QD(e,v,w,u)=\frac {v}{1+w\cdot (e-u)^2}.
110\label{QuasiD}
111\end{equation}
112For $^1$H and $^2$H the quasi-deuteron contribution is almost zero.  For
113these nuclei the third baryonic resonance was used instead, so the
114parameters for these two nuclei are quite different, but trivial.
115The parameter values are given below.
116
117\begin{itemize}
118
119\item  $v = \frac {exp(-1.7+a\cdot 0.84)}{1+exp(7\cdot (2.38-a))}$, where
120$a=log(A)$.  This shows that the $A$-dependence in the quasi-deuteron
121region is stronger than $A^{0.84}$.  It is clear from the denominator that
122this contribution is very small for light nuclei (up to $^6$Li or $^7$Li).
123For $^1$H it is 0.078 and for $^2$H it is 0.08, so the delta contribution
124does not appear to be growing.  Its relative contribution disappears with
125$A$.
126
127\item  $u = 3.7$ and $w = 0.4$.  The experimental information is not
128sufficient to determine an $A$-dependence for these parameters.  For both
129$^1$H and $^2$H $u = 6.93$ and $w = 90$, which may indicate contributions
130from the $\Delta$(1600) and $\Delta$(1620).
131
132\end{itemize}
133
134\noindent
135The transition Roper contribution was parameterized using the same form
136as the quasi-deuteron contribution:
137\begin{equation}
138Tr(e,v,w,u)=\frac {v}{1+w\cdot (e-u)^2}.
139\label{Transition}
140\end{equation}
141Using $a=log(A)$, the values of the parameters are
142
143\begin{itemize}
144
145\item  $v = exp(-2.+a\cdot 0.84)$.  For $^1$H it is 0.22 and for $^2$H
146it is 0.34.
147
148\item $u = 6.46+a\cdot 0.061$ (for $^1$H and for $^2$H it is 6.57), so the
149``mass'' of the Roper moves higher with $A$.
150
151\item $w = 0.1+a\cdot 1.65$.  For $^1$H it is 20.0 and for $^2$H it is 15.0).
152\end{itemize}
153
154
155\noindent
156The Regge-Pomeron contribution was parametrized as follows:
157\begin{equation}
158RP(e,h)=h\cdot th(7.,0.2)\cdot (0.0116\cdot exp(e\cdot 0.16)+0.4\cdot exp(-e\cdot 0.2)),
159\label{Regge}
160\end{equation}
161where $h=A\cdot exp(-a\cdot (0.885+0.0048\cdot a))$ and, again,
162$a = log(A)$.  The first exponential in Eq.~\ref{Regge} describes the Pomeron
163contribution while the second describes the Regge contribution.
164
165%The result of the approximation is shown in Fig.~\ref{photonuc} for 6
166% of the 14 nuclei.
167%\begin{figure}
168%  \resizebox{1.00\textwidth}{!}
169%{
170%% hpw @@@@@   \includegraphics{photonuclear.eps}
171%}
172%\caption{Photoabsorbtion cross sections for 6 basic nuclei.}
173%\label{photonuc}
174%\end{figure}
175
176
177\section{Electronuclear Cross Sections and Reactions}
178
179Electronuclear reactions are so closely connected with photonuclear reactions
180that they are sometimes called ``photonuclear'' because the one-photon
181exchange mechanism dominates in electronuclear reactions.  In this sense
182electrons can be replaced by a flux of equivalent photons.  This is not
183completely true, because at high energies the Vector Dominance Model (VDM) or
184diffractive mechanisms are possible, but these types of reactions are beyond
185the scope of this discussion.
186
187\subsection[Common Notation for Electronuclear Reactions]{Common Notation for Different Approaches to Electronuclear Reactions}
188\label{threeApproaches}
189
190The Equivalent Photon Approximation (EPA) was proposed by
191E. Fermi \cite{Fermi} and developed by C. Weizsacker and E. Williams
192\cite{WeiWi} and by L. Landau and E. Lifshitz \cite{LanLif}. The
193covariant form of the EPA method was developed in Refs. \cite{Pomer} and
194\cite{Grib}.  When using this method it is necessary to take into account
195that real photons are always transversely polarized while virtual photons
196may be longitudinally polarized.  In general the differential cross section
197of the electronuclear interaction can be written as
198\begin{equation}
199\frac{d^2\sigma}{dydQ^2}=\frac{\alpha}{\pi Q^2}(S_{TL}\cdot(\sigma_T
200+\sigma_L)-S_L\cdot\sigma_L),
201\label{elNuc}
202\end{equation}
203where
204\begin{equation}
205S_{TL}=y\frac{1-y+\frac{y^2}{2}+\frac{Q^2}{4E^2}
206-\frac{m^2_e}{Q^2}(y^2+\frac{Q^2}{E^2})}{y^2+\frac{Q^2}{E^2}},
207\label{STL}
208\end{equation}
209\begin{equation}
210S_L=\frac{y}{2}(1-\frac{2m_e^2}{Q^2}).
211\label{SL}
212\end{equation}
213The differential cross section of the electronuclear scattering can be
214rewritten as
215\begin{equation}
216\frac{d^2\sigma_{eA}}{dydQ^2}=\frac{\alpha y}{\pi Q^2}\left(\frac{(1-\frac{y}{2})^2}
217{y^2+\frac{Q^2}{E^2}}+\frac{1}{4}-\frac{m^2_e}{Q^2}\right)\sigma_{\gamma^*A},
218\label{difBase}
219\end{equation}
220where $\sigma_{\gamma^*A}=\sigma_{\gamma A}(\nu)$ for small $Q^2$ and
221must be approximated as a function of $\epsilon$, $\nu$, and $Q^2$ for
222large $Q^2$.  Interactions of longitudinal photons are included in the
223effective $\sigma_{\gamma^*A}$ cross section through the $\epsilon$ factor,
224but in the present GEANT4 method, the cross section of virtual photons is
225considered to be $\epsilon$-independent.  The electronuclear problem, with
226respect to the interaction of virtual photons with nuclei, can thus be split
227in two.  At small $Q^2$ it is possible to use the $\sigma_\gamma(\nu)$ cross
228section.  In the $Q^2>>m^2_e$ region it is necessary to calculate the effective
229$\sigma_{\gamma^*}(\epsilon,\nu,Q^2)$ cross section. \\
230
231\noindent 
232Following the EPA notation, the differential cross section of electronuclear
233scattering can be related to the number of equivalent photons
234$dn=\frac{d\sigma}{\sigma_{\gamma^*}}$.  For $y<<1$ and $Q^2<4m^2_e$ the
235canonical method \cite{encs.eqPhotons} leads to the simple result
236\begin{equation}
237\frac{ydn(y)}{dy}=-\frac{2\alpha}{\pi}ln(y).
238\label{neq}
239\end{equation}
240In \cite{Budnev} the integration over $Q^2$ for $\nu^2>>Q^2_{max}\simeq m^2_e$
241leads to
242\begin{equation}
243\frac{ydn(y)}{dy}=-\frac{\alpha}{\pi}\left(
244\frac{1+(1-y)^2}{2}ln(\frac{y^2}{1-y})+(1-y)\right).
245\label{lowQ2EP}
246\end{equation}
247In the $y<<1$ limit this formula converges to Eq.(\ref{neq}).  But the
248correspondence with Eq.(\ref{neq}) can be made more explicit if the exact
249integral
250\begin{equation}
251\frac{ydn(y)}{dy}=\frac{\alpha}{\pi}\left(
252\frac{1+(1-y)^2}{2}l_1-(1-y)l_2-\frac{(2-y)^2}{4}l_3\right),
253\label{diff}
254\end{equation}
255where $l_1=ln\left(\frac{Q^2_{max}}{Q^2_{min}}\right)$,
256$l_2=1-\frac{Q^2_{max}}{Q^2_{min}}$,
257$l_3=ln\left(\frac{y^2+Q^2_{max}/E^2}{y^2+Q^2_{min}/E^2}\right)$,
258$Q^2_{min}=\frac{m_e^2y^2}{1-y}$,
259is calculated for
260\begin{equation}
261Q^2_{max(m_e)}=\frac{4m^2_e}{1-y}.
262\label{Q2me}
263\end{equation}
264The factor $(1-y)$ is used arbitrarily to keep $Q^2_{max(m_e)}>Q^2_{min}$,
265which can be considered as a boundary between the low and high $Q^2$ 
266regions.  The full transverse photon flux can be calculated as an integral
267of Eq.(\ref{diff}) with the maximum possible upper limit
268\begin{equation}
269Q^2_{max(max)}=4E^2(1-y).
270\label{Q2max}
271\end{equation}
272The full transverse photon flux can be approximated by
273\begin{equation}
274\frac{ydn(y)}{dy}=-\frac{2\alpha}{\pi}\left(
275\frac{(2-y)^2+y^2}{2}ln(\gamma)-1\right),
276\label{neqHQ}
277\end{equation}
278where $\gamma=\frac{E}{m_e}$.  It must be pointed out that neither this
279approximation nor Eq.(\ref{diff}) works at $y\simeq 1$;  at this point
280$Q^2_{max(max)}$ becomes smaller than $Q^2_{min}$.  The formal limit of the
281method is $y<1-\frac{1}{2\gamma}$. \\
282\begin{figure}[tbp]
283\resizebox{0.95\textwidth}{!}
284{
285   \includegraphics{hadronic/theory_driven/ChiralInvariantPhaseSpace/Fig12.eps}
286}
287\caption{Relative contribution of equivalent photons with small $Q^2$
288to the total ``photon flux'' for (a) $1~GeV$ electrons and (b) $10~GeV$
289electrons.  In figures (c) and (d) the equivalent photon distribution
290$dn(\nu,Q^2)$ is multiplied by the photonuclear cross section
291$\sigma_{\gamma^*}(K,Q^2)$ and integrated over $Q^2$ in two regions:
292the dashed lines are integrals over the low-$Q^2$ equivalent
293photons (under the dashed line in the first two figures), and the
294solid lines are integrals over the high-$Q^2$ equivalent photons (above
295the dashed lines in the first two figures).}
296\label{nSigma}
297\end{figure}
298
299\noindent 
300In Fig.~\ref{nSigma}(a,b) the energy distribution for the equivalent photons
301is shown.  The low-$Q^2$ photon flux with the upper limit defined by
302Eq.(\ref{Q2me})) is compared with the full photon flux.  The
303low-$Q^2$ photon flux is calculated using Eq.(\ref{neq}) (dashed lines) and
304using Eq.(\ref{diff}) (dotted lines).  The full photon
305flux is calculated using Eq.(\ref{neqHQ}) (the solid lines) and using
306Eq.(\ref{diff}) with the upper limit defined by Eq.(\ref{Q2max}) (dash-dotted
307lines, which differ from the solid lines only at $\nu\approx E_e$).  The
308conclusion is that in order to calculate either the number of low-$Q^2$ 
309equivalent photons or the total number of equivalent photons one can use the
310simple approximations given by Eq.(\ref{neq}) and Eq.(\ref{neqHQ}),
311respectively, instead of using Eq.(\ref{diff}), which cannot be integrated
312over $y$ analytically.  Comparing the low-$Q^2$ photon flux and the total
313photon flux it is possible to show that the low-$Q^2$ photon flux is about
314half of the the total.  From the interaction point of view the decrease of
315$\sigma_{\gamma*}$ with increasing $Q^2$ must be taken into account.  The
316cross section reduction for the virtual photons with large $Q^2$ is governed
317by two factors.  First, the cross section drops with $Q^2$ as the squared
318dipole nucleonic form-factor
319\begin{equation}
320G^2_D(Q^2)\approx\left( 1+\frac{Q^2}{(843~MeV)^2}\right)^{-2}.
321\label{G2}
322\end{equation}
323Second, all the thresholds of the $\gamma A$ reactions are shifted to higher
324$\nu$ by a factor $\frac{Q^2}{2M}$, which is the difference between the $K$ 
325and $\nu$ values.  Following the method proposed in \cite{Brasse}
326the $\sigma_{\gamma^*}$ at large $Q^2$ can be approximated as
327\begin{equation}
328\sigma_{\gamma*}=(1-x)\sigma_\gamma(K)G^2_D(Q^2)e^{b(\epsilon,K)\cdot
329r+c(\epsilon,K)\cdot r^3},
330\label{abc}
331\end{equation}
332where $r=\frac{1}{2}ln(\frac{Q^2+\nu^2}{K^2})$.  The $\epsilon$-dependence of
333the $a(\epsilon,K)$ and $b(\epsilon,K)$ functions is weak, so for simplicity
334the $b(K)$ and $c(K)$ functions are averaged over $\epsilon$.  They can be
335approximated as
336\begin{equation}
337b(K)\approx\left(\frac{K}{185~MeV}\right)^{0.85},
338\label{bk}
339\end{equation}
340and
341\begin{equation}
342c(K)\approx-\left(\frac{K}{1390~MeV}\right)^{3}.
343\label{ck}
344\end{equation}
345
346\noindent 
347The result of the integration of the photon flux multiplied by the
348cross section approximated by Eq.(\ref{abc}) is shown in
349Fig.~\ref{nSigma}(c,d).  The integrated cross sections are shown
350separately for the low-$Q^2$ region ($Q^2<Q^2_{max(m_e)}$, dashed
351lines) and for the high-$Q^2$ region ($Q^2>Q^2_{max(m_e)}$, solid
352lines).  These functions must be integrated over $ln(\nu)$, so it is
353clear that because of the Giant Dipole Resonance contribution, the
354low-$Q^2$ part covers more than half the total $eA\rightarrow hadrons$ 
355cross section.  But at $\nu>200~MeV$, where the hadron multiplicity
356increases, the large $Q^2$ part dominates.  In this sense, for a better
357simulation of the production of hadrons by electrons, it is necessary to
358simulate the high-$Q^2$ part as well as the low-$Q^2$ part. \\
359
360\noindent 
361Taking into account the contribution of high-$Q^2$ photons it is possible to
362use Eq.(\ref{neqHQ}) with the over-estimated
363$\sigma_{\gamma^*A}=\sigma_{\gamma A}(\nu)$ cross section.  The slightly
364over-estimated electronuclear cross section is
365\begin{equation}
366\sigma^*_{eA}=(2ln(\gamma)-1)\cdot J_1-\frac{ln(\gamma)}{E_e}
367\left( 2J_2-\frac{J_3}{E_e} \right).
368\label{eleNucHQ}
369\end{equation}
370where
371\begin{equation}
372J_1(E_e)=\frac{\alpha}{\pi}\int^{E_e}\sigma_{\gamma A}(\nu)dln(\nu)
373\label{J1}
374\end{equation}
375\begin{equation}
376J_2(E_e)=\frac{\alpha}{\pi}\int^{E_e}\nu\sigma_{\gamma A}(\nu)dln(\nu),
377\label{J2}
378\end{equation}
379and
380\begin{equation}
381J_3(E_e)=\frac{\alpha}{\pi}\int^{E_e}\nu^2\sigma_{\gamma A}(\nu )dln(\nu).
382\label{J3}
383\end{equation}
384The equivalent photon energy $\nu=yE$ can be obtained for a particular
385random number $R$ from the equation
386\begin{equation}
387R=\frac{(2ln(\gamma)-1)J_1(\nu)-\frac{ln(\gamma)}{E_e}(2J_2(\nu)-\frac{J_3(\nu)}{E_e})}
388{(2ln(\gamma)-1)J_1(E_e)-\frac{ln(\gamma)}{E_e}(2J_2(E_e)-\frac{J_3(E_e)}{E_e})}.
389\label{RnuHH}
390\end{equation}
391Eq.(\ref{diff}) is too complicated for the randomization of $Q^2$ but
392there is an easily randomized formula which approximates Eq.(\ref{diff})
393above the hadronic threshold ($E>10~MeV$).  It reads
394\begin{equation}
395\frac{\pi}{\alpha D(y)}\int^{Q^2}_{Q^2_{min}}\frac{ydn(y,Q^2)}{dydQ^2}dQ^2=-L(y,Q^2)-U(y),
396\label{RQ2HH}
397\end{equation}
398where
399\begin{equation}
400D(y)=1-y+\frac{y^2}{2},
401\label{RQ2D}
402\end{equation}
403\begin{equation}
404L(y,Q^2)=ln\left( F(y)+(e^{P(y)}-1+\frac{Q^2}{Q^2_{min}})^{-1} \right),
405\label{RQ2L}
406\end{equation}
407and
408\begin{equation}
409U(y)=P(y)\cdot\left( 1-\frac{Q^2_{min}}{Q^2_{max}}\right),
410\label{RQ2U}
411\end{equation}
412with
413\begin{equation}
414F(y)=\frac{(2-y)(2-2y)}{y^2}\cdot\frac{Q^2_{min}}{Q^2_{max}}
415\label{RQ2F}
416\end{equation}
417and
418\begin{equation}
419P(y)=\frac{1-y}{D(y)}.
420\label{RQ2P}
421\end{equation}
422The $Q^2$ value can then be calculated as
423\begin{equation}
424\frac{Q^2}{Q^2_{min}}=1-e^{P(y)}+\left(e^{R\cdot
425L(y,Q^2_{max})-(1-R)\cdot U(y)}-F(y) \right)^{-1},
426\label{Q2sol}
427\end{equation}
428where $R$ is a random number.  In Fig.~\ref{Q2dep}, Eq.(\ref{diff}) (solid
429curve) is compared to Eq.(\ref{RQ2HH}) (dashed curve).  Because the two
430curves are almost indistinguishable in the figure, this can be used as an
431illustration of the $Q^2$ spectrum of virtual photons, which is the derivative
432of these curves.  An alternative approach is to use Eq.(\ref{diff}) for the
433randomization with a three dimensional table $\frac{ydn}{dy}(Q^2,y,E_e)$.
434\begin{figure}[tbp]
435\resizebox{0.95\textwidth}{!}
436{
437   \includegraphics{hadronic/theory_driven/ChiralInvariantPhaseSpace/Fig13.eps}
438}
439\caption{Integrals of $Q^2$ spectra of virtual photons for three
440energies $10~MeV$, $100~MeV$, and $1~GeV$ at $y=0.001$, $y=0.5$, and $y=0.95$.
441The solid line corresponds to Eq.(\protect\ref{diff}) and the dashed
442line (which almost everywhere coincides with the solid line)
443corresponds to Eq.(\protect\ref{diff}).}
444\label{Q2dep}
445\end{figure}
446
447\noindent 
448After the $\nu$ and $Q^2$ values have been found, the value of
449$\sigma_{\gamma^*A}(\nu,Q^2)$ is calculated using Eq.(\ref{abc}).
450If $R\cdot\sigma_{\gamma A}(\nu)>\sigma_{\gamma^*A}(\nu,Q^2)$, no
451interaction occurs and the electron keeps going. This ``do nothing''
452process has low probability and cannot shadow other processes.
453
454
455\section {Status of this document}
456           created by ?              \\
457 20.05.02  re-written by D.H. Wright \\
458 01.12.02  expanded section on electronuclear cross sections - H.P. Wellisch \\
459
460
461\begin{latexonly}
462
463\begin{thebibliography}{99}
464
465\bibitem{Fermi} E. Fermi, Z. Physik {\textbf{29}}, 315 (1924).
466
467\bibitem{WeiWi} K. F. von Weizsacker, Z. Physik {\textbf{88}}, 612 (1934),
468E. J. Williams, Phys. Rev. {\textbf{45}}, 729 (1934).
469
470\bibitem{LanLif} L. D. Landau and E. M. Lifshitz,
471Soc. Phys. {\textbf{6}}, 244 (1934).
472
473\bibitem{Pomer} I. Ya. Pomeranchuk and I. M. Shmushkevich,
474Nucl. Phys. {\textbf{23}}, 1295 (1961).
475
476\bibitem{Grib} V. N. Gribov {\textit {et~al.}}, ZhETF {\textbf{41}}, 1834 (1961).
477
478\bibitem{encs.eqPhotons}  L. D. Landau, E. M. Lifshitz, ``Course of
479Theoretical Physics'' v.4, part 1, ``Relativistic Quantum Theory'',
480Pergamon Press, p. 351, The method of equivalent photons.
481
482\bibitem{Budnev} V. M. Budnev {\textit {et~al.}}, Phys. Rep. {\textbf{15}}, 181
483(1975).
484
485\bibitem{Brasse} F. W. Brasse {\textit {et~al.}}, Nucl. Phys. B {\textbf{110}}, 413
486(1976).
487
488\end{thebibliography}
489
490\end{latexonly}
491
492\begin{htmlonly}
493
494\section{Bibliography}
495
496\begin{enumerate}
497\item E. Fermi, Z. Physik {\textbf{29}}, 315 (1924).
498
499\item K. F. von Weizsacker, Z. Physik {\textbf{88}}, 612 (1934),
500E. J. Williams, Phys. Rev. {\textbf{45}}, 729 (1934).
501
502\item L. D. Landau and E. M. Lifshitz,
503Soc. Phys. {\textbf{6}}, 244 (1934).
504
505\item I. Ya. Pomeranchuk and I. M. Shmushkevich,
506Nucl. Phys. {\textbf{23}}, 1295 (1961).
507
508\item V.N. Gribov {\textit {et~al.}}, ZhETF {\textbf{41}}, 1834 (1961).
509
510\item L.D. Landau, E. M. Lifshitz, ``Course of
511Theoretical Physics'' v.4, part 1, ``Relativistic Quantum Theory'',
512Pergamon Press, p. 351, The method of equivalent photons.
513
514\item V.M. Budnev {\textit {et~al.}}, Phys. Rep. {\textbf{15}}, 181
515(1975).
516
517\item F.W. Brasse {\textit {et~al.}}, Nucl. Phys. B {\textbf{110}}, 413
518(1976).
519
520\end{enumerate}
521
522\end{htmlonly}
523
524
525
526
Note: See TracBrowser for help on using the repository browser.