source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/hadronic/theory_driven/CrossSection/GlauberModel.tex @ 1345

Last change on this file since 1345 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 4.3 KB
Line 
1\subsection{Glauber model at high energies.}
2
3\hspace{1.0em}We can use Glauber approach \cite{Glauber55} to calculate
4the total, elastic and differential elastic hadron-nucleus and nucleus-
5nucleus cross sections at high (more than hundreds of MeV) energies.
6
7\subsubsection{The hadron--nucleus and nucleus--nucleus total and
8elastic cross sections.}
9\hspace{1.0em}
10The knowledge of the nuclear elastic scattering amplitude $F(\vec{q},s)$,
11where $s$ is the total hadron-nucleon or nucleon-nucleon c.m. energy squared
12and $\vec{q}$ is the momentum transfer vector, 
13gives us a possibility to calculate  the total cross section (the optical
14 theorem)
15\begin{equation}
16\label{GM1} \sigma_{tot}(s) = \frac{4\pi}{k} Im F(0,s),
17\end{equation}
18where $k$ is a hadron or nucleon projectile momentum in the target nucleus
19rest frame.
20Using this amplitude we are also able to calculate the differential elastic
21cross section
22\begin{equation}
23\label{GM2} \frac{d\sigma_{el}(s)}{d\Omega} = |F(\vec{q},s)|^2
24\end{equation}
25or
26\begin{equation}
27\label{GM3} \frac{d\sigma_{el}(s)}{dt} =\frac{\pi}{k^2} |F(\vec{q},s)|^2
28\end{equation}
29and total elastic cross section
30\begin{equation}
31\label{GM4} \sigma_{el}(s)= \int d\Omega|F(\vec{q},s)|^2 =
32\frac{1}{k^2}\int dq|F(\vec{q},s)|^2.
33\end{equation}
34
35The elastic scattering amplitude can be expressed through the profile
36function
37\begin{equation}
38\label{GM5}\Gamma(\vec{B},s)= 1-S(\vec{B},s)
39\end{equation}
40as the following
41\begin{equation}
42\label{GM6} F(\vec{q},s)=\frac{ik}{2\pi}\int
43d^2\vec{B}\exp{[i\vec{q}\Gamma(\vec{B},s)]},
44\end{equation}
45where $S(\vec{B},s)$ is the $S$-matrix and $\vec{B}$ 
46is the impact parameter vector perpendicular to the
47incident momentum $\vec{k}$.
48
49The total and elastic cross sections can be obtained from
50  the profile function $\Gamma(\vec{B},s)$:
51\begin{equation}
52\label{GM7} \sigma_{tot}(s)= 2\int d^2\vec{B}Re\Gamma(\vec{B},s)
53\end{equation}
54and
55\begin{equation}
56\label{GM8} \sigma_{el}(s)= \int d^2\vec{B}|\Gamma(\vec{B},s)|^2.
57\end{equation}
58
59Thus to calculate the total, elastic and differential cross sections we need
60to know $S$-matrix $S(\vec{B},s)$.
61
62\subsubsection{The hadron--nucleus and nucleus--nucleus
63$S$-matrix.}
64\hspace{1.0em}
65
66Let us consider the nucleus-nucleus scattering at
67given impact parameter $\vec{B}$ and at given squared total
68c.m. nucleon--nucleon energy $s$.
69 
70In Glauber approach \cite{Glauber55} an
71elastic nucleus--nucleus interaction is a result of the
72interactions between nucleons from the projectile and target nuclei.
73Thus, the $S$-scattering matrix $S^{AB}(\vec B,s)$ for
74nucleus $A$ on nucleus $B$
75collision in the impact parameter representation can
76be expressed as follows:
77\begin{equation}
78\label{GM9}S^{AB}( \vec
79B,s)=<\prod\limits_{i=1}^A\prod\limits_{j=1}^B
80[1 - \Gamma_{ij}(\vec{B}+ \vec b_i^A-\vec b_j^B,s)]>
81\end{equation}
82where $<...>$ means integration over the sets $\{\vec b_i^A\}$ and
83$\{\vec b_j^B\}$ with weight functions $T _A$$(\{\vec b^A\})$ and
84$T_B$$(\{\vec b^B\})$.  These functions
85\begin{equation}
86\label{GM10} T_{A,B}(\vec b_i^{A,B})=\int
87\rho ((\vec b_i^{A,B}z_i)dz_i
88\end{equation}
89 can be obtained from the nucleon
90densities $\rho ((\vec b_i^{A,B},z_i)$. The nucleon profile function is
91\begin{equation}
92\label{GM11} \Gamma_{ij}(\vec{B}+ \vec b_i^A-\vec b_j^B,s) =
93\frac{\sigma_{ij}(s)}{4\pi \beta_{ij}(s)} \exp{[-\frac{(\vec{B} +
94\vec b_i^A-\vec b_j^B)^2}{2\beta_{ij}(s)}]}.
95\end{equation}
96The last equation can be obtained in the case of nucleon-nucleon
97amplitude parametrization:
98\begin{equation}
99\label{GM12} f_{ij}(q,s) = \frac{ik \sigma_{ij}(s)}{4\pi}
100\exp{[-\frac{1}{2}\beta_{ij}(s) q^2]}.
101\end{equation}
102The equation $(\ref{GM9})$ is a result of the assumptions that
103the $AB$-scattering phase is sum of
104the nucleon--nucleon scattering phases and no correlations between nucleons
105inside a nucleus are taken into account.
106
107The hadron-nucleus $S$-matrix is calculated in similar way using
108Eq. $(\ref{GM9})$ for $i = 1$ and $\vec b_i = 0$. In this case
109we need to use the corresponding parameter $\sigma_{hN}(s)$ 
110and $\beta_{hN}(s)$
111in nucleon profile function.
112
113 As we will show below
114the hadron-nucleon and nucleon--nucleon elastic scattering amplitudes at high
115energies
116 can be expressed
117through the reggeon-nucleon vertex parameters and the parameters of the
118reggeon trajectory\cite{BT76}.
119 
Note: See TracBrowser for help on using the repository browser.