source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/hadronic/theory_driven/CrossSection/HECrossSectionModelAlgorithm.tex @ 1345

Last change on this file since 1345 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 1.3 KB
Line 
1\subsection{High energy MC cross section algorithm.}
2
3\hspace{1.0em}To obtain total (see Eq. $(\ref{GM7})$) and elastic
4(see Eq. $(\ref{GM8})$) hadron-nucleus or nucleus-nucleus
5 cross section at given initial energy  we have to integrate the nucleon
6 profile function $\Gamma(\vec{B},s)= 1-S(\vec{B},s)$.
7 This is done by the Monte Carlo averaging procedure \cite{Shabelski90},
8 \cite{ZSU84}
9  to obtain the $S$-matrix values using Eq. $(\ref{GM9})$. These values
10  depend on the squared total c.m.  energy of the colliding
11$(i,j)$ pair  $s_{ij}=(p_{i}+p_{j})^2$, where
12  $p_{i}$ and $p_{j}$ are the particle $4$-momenta,
13respectively. Performing the Monte Carlo averaging one has to pick up
14projectile and target nucleons
15 randomly
16according to the weight functions $T([\vec{b}^{A}_{i}])$ and
17$T([\vec{b}^{B}_{j}])$, respectively.
18 The last functions represent
19probability densities to find sets of the nucleon impact parameters
20$[\vec{b}^{A}_{i}]$, where $i=1,2,...,A$ and $[\vec{b}^{B}_{j}]$, where
21$j=1,2,...,B$.
22Then by integration over $\vec{B}$ we  find the total and elastic
23cross sections. To obtain the elastic differential cross section from
24the Eqs. $(\ref{GM2})$ and $(\ref{GM3})$ we have at first to
25perform the back Fourier transform of the nucleon profile function (see
26Eq. $(\ref{GM6})$).
Note: See TracBrowser for help on using the repository browser.