\chapter{Total Reaction Cross Section in Nucleus-nucleus Reactions} \noindent The transportation of heavy ions in matter is a subject of much interest in several fields of science. An important input for simulations of this process is the total reaction cross section, which is defined as the total ($\sigma_{T}$) minus the elastic ($\sigma_{el}$) cross section for nucleus-nucleus reactions: \begin{eqnarray*} \sigma_{R} = \sigma_{T} - \sigma_{el} . \end{eqnarray*} The total reaction cross section has been studied both theoretically and experimentally and several empirical parameterizations of it have been developed. In Geant4 the total reaction cross sections are calculated using four such parameterizations: the Sihver\cite{nnc.Sihver93}, Kox\cite{nnc.Kox87}, Shen\cite{nnc.Shen89} and Tripathi\cite{nnc.Tripathi97} formulae. Each of these is discussed in order below. \section{Sihver Formula} \noindent Of the four parameterizations, the Sihver formula has the simplest form: \begin{equation} \sigma_{R} = \pi r^{2}_{0}[A^{1/3}_{p} + A^{1/3}_{t} - b_{0} [A^{-1/3}_{p} + A^{-1/3}_{t}] ]^{2} \end{equation} where A$_{p}$ and A$_{t}$ are the mass numbers of the projectile and target nuclei, and \begin{eqnarray*} b_{0}=1.581-0.876(A^{-1/3}_{p} + A^{-1/3}_{t}) , \end{eqnarray*} \begin{eqnarray*} r_{0}=1.36fm. \end{eqnarray*} It consists of a nuclear geometrical term $(A^{1/3}_p + A^{1/3}_t)$ and an overlap or transparency parameter ($b_0$) for nucleons in the nucleus. The cross section is independent of energy and can be used for incident energies greater than 100 MeV/nucleon. \section{Kox and Shen Formulae} \noindent Both the Kox and Shen formulae are based on the strong absorption model. They express the total reaction cross section in terms of the interaction radius $R$, the nucleus-nucleus interaction barrier $B$, and the center-of-mass energy of the colliding system $E_{CM}$: \begin{equation} \sigma_{R} = \pi R^{2}[1-\frac{B}{E_{CM}}]. \end{equation} \noindent {\bf Kox formula:} Here $B$ is the Coulomb barrier ($B_c$) of the projectile-target system and is given by \begin{eqnarray*} B_{c}=\frac{Z_{t}Z_{p}e^{2}}{r_{C}(A^{1/3}_{t}+A^{1/3}_{p})}, \end{eqnarray*} where $r_{C}$ = 1.3 fm, $e$ is the electron charge and $Z_t$, $Z_p$ are the atomic numbers of the target and projectile nuclei. $R$ is the interaction radius $R_{int}$ which in the Kox formula is divided into volume and surface terms: \begin{eqnarray*} R_{int}=R_{vol}+R_{surf} . \end{eqnarray*} $R_{vol}$ and $R_{surf}$ correspond to the energy-independent and energy-dependent components of the reactions, respectively. Collisions which have relatively small impact parameters are independent of both energy and mass number. These core collisions are parameterized by $R_{vol}$. Therefore $R_{vol}$ can depend only on the volume of the projectile and target nuclei: \begin{eqnarray*} R_{vol}=r_{0}(A^{1/3}_{t}+A^{1/3}_{p}) . \end{eqnarray*} The second term of the interaction radius is a nuclear surface contribution and is parameterized by \begin{eqnarray*} R_{surf}=r_{0}[a\frac{A^{1/3}_{t}A^{1/3}_{p}}{A^{1/3}_{t}+A^{1/3}_{p}}-c]+D. \end{eqnarray*} The first term in brackets is the mass asymmetry which is related to the volume overlap of the projectile and target. The second term $c$ is an energy-dependent parameter which takes into account increasing surface transparency as the projectile energy increases. $D$ is the neutron-excess which becomes important in collisions of heavy or neutron-rich targets. It is given by \begin{eqnarray*} D=\frac{5(A_{t}-Z_{t})Z_{p}}{A_{p}A_{r}}. \end{eqnarray*} The surface component ($R_{surf}$) of the interaction radius is actually not part of the simple framework of the strong absorption model, but a better reproduction of experimental results is possible when it is used. The parameters $r_0$, $a$ and $c$ are obtained using a $\chi^{2}$ minimizing procedure with the experimental data. In this procedure the parameters $r_{0}$ and $a$ were fixed while $c$ was allowed to vary only with the beam energy per nucleon. The best $\chi^{2}$ fit is provided by $r_{0}$ = 1.1 fm and $a = 1.85$ with the corresponding values of $c$ listed in Table III and shown in Fig.~12 of Ref.~\cite{nnc.Kox87} as a function of beam energy per nucleon. This reference presents the values of $c$ only in chart and figure form, which is not suitable for Monte Carlo calculations. Therefore a simple analytical function is used to calculate $c$ in Geant4. The function is: \begin{eqnarray*} c=-\frac{10}{x^{5}}+2.0 \mbox{ } \rm{for} \mbox{ } x \ge 1.5 \end{eqnarray*} \begin{eqnarray*} c=(-\frac{10}{1.5^{5}}+2.0)\times(\frac{x}{1.5})^{3} \mbox{ } \rm{for} \mbox{ } x < 1.5 , \end{eqnarray*} \begin{eqnarray*} x=log(KE) , \end{eqnarray*} where $KE$ is the projectile kinetic energy in units of MeV/nucleon in the laboratory system. \\ \noindent {\bf Shen formula:} as mentioned earlier, this formula is also based on the strong absorption model, therefore it has a structure similar to the Kox formula: \begin{equation} \sigma_{R} = 10\pi R^{2}[1-\frac{B}{E_{CM}}]. \end{equation} However, different parameterized forms for $R$ and $B$ are applied. The interaction radius $R$ is given by \begin{eqnarray*} R=r_{0}[A^{1/3}_{t}+A^{1/3}_{p}+1.85\frac{A^{1/3}_{t}A^{1/3}_{p}}{A^{1/3}_{t}+A^{1/3}_{p}}-C'(KE)] \\ +\alpha\frac{5(A_{t}-Z_{t})Z_{p}}{A_{p}A_{r}}+\beta E^{-1/3}_{CM}\frac{A^{1/3}_{t}A^{1/3}_{p}}{A^{1/3}_{t}+A^{1/3}_{p}} \end{eqnarray*} where $\alpha$, $\beta$ and $r_0$ are \begin{eqnarray*} \alpha = 1 fm \end{eqnarray*} \begin{eqnarray*} \beta = 0.176MeV^{1/3} \cdot fm \end{eqnarray*} \begin{eqnarray*} r_{0}= 1.1 fm \end{eqnarray*} In Ref.~\cite{nnc.Shen89} as well, no functional form for $C'(KE)$ is given. Hence the same simple analytical function is used by Geant4 to derive $c$ values. The second term $B$ is called the nuclear-nuclear interaction barrier in the Shen formula and is given by \begin{eqnarray*} B=\frac{1.44Z_{t}Z_{p}}{r}-b\frac{R_{t}R_{p}}{R_{t}+R_{p}} (MeV) \end{eqnarray*} where $r$, $b$, $R_t$ and $R_p$ are given by \begin{eqnarray*} r=R_{t}+R_{p}+3.2fm \end{eqnarray*} \begin{eqnarray*} b=1MeV\cdot fm^{-1} \end{eqnarray*} \begin{eqnarray*} R_{i}=1.12A^{1/3}_{i} -0.94A^{-1/3}_{i} ~ (i=t,p) \end{eqnarray*} The difference between the Kox and Shen formulae appears at energies below 30 MeV/nucleon. In this region the Shen formula shows better agreement with the experimental data in most cases. \section{Tripathi formula} \noindent Because the Tripathi formula is also based on the strong absorption model its form is similar to the Kox and Shen formulae: \begin{equation} \sigma_{R} = \pi r_0^2 (A^{1/3}_{p}+A^{1/3}_{t}+\delta_{E})^{2}[1-\frac{B}{E_{CM}}], \label{eqn15.4} \end{equation} where $r_0$ = 1.1 fm. In the Tripathi formula $B$ and $R$ are given by \begin{eqnarray*} B=\frac{1.44Z_{t}Z_{p}}{R} \end{eqnarray*} \begin{eqnarray*} R=r_{p}+r_{t}+\frac{1.2(A^{1/3}_{p}+A^{1/3}_{t})}{E^{1/3}_{CM}} \end{eqnarray*} where $r_i$ is the equivalent sphere radius and is related to the $r_{rms,i}$ radius by \[ r_{i}=1.29r_{rms,i} ~ (i=p,t) . \] $\delta_{E}$ represents the energy-dependent term of the reaction cross section which is due mainly to transparency and Pauli blocking effects. It is given by \begin{eqnarray*} \delta_{E}=1.85S+(0.16S/E^{1/3}_{CM})-C_{KE}+[0.91(A_{t}-2Z_{t})Z_{p}/(A_{p}A_{t})], \end{eqnarray*} where $S$ is the mass asymmetry term given by \begin{eqnarray*} S=\frac{A^{1/3}_{p}A^{1/3}_{t}}{A^{1/3}_{p}+A^{1/3}_{t}}. \end{eqnarray*} This is related to the volume overlap of the colliding system. The last term accounts for the isotope dependence of the reaction cross section and corresponds to the $D$ term in the Kox formula and the second term of $R$ in the Shen formula. The term $C_{KE}$ corresponds to $c$ in Kox and $C'(KE)$ in Shen and is given by \begin{eqnarray*} C_{E}=D_{Pauli}[1-\exp(-KE/40)]-0.292\exp(-KE/792)\times\cos(0.229KE^{0.453}) .\,\\ \end{eqnarray*} Here D$_{Pauli}$ is related to the density dependence of the colliding system, scaled with respect to the density of the $^{12}$C+$^{12}$C colliding system: \\ \begin{eqnarray*} D_{Pauli} = 1.75 \frac{\rho_{A_p}+\rho_{A_t}}{\rho_{A_{\boldmath C}}+\rho_{A_{\boldmath C}}} . \end{eqnarray*} The nuclear density is calculated in the hard sphere model. $D_{Pauli}\,$ simulates the modifications of the reaction cross sections caused by Pauli blocking and is being introduced to the Tripathi formula for the first time. The modification of the reaction cross section due to Pauli blocking plays an important role at energies above 100 MeV/nucleon. Different forms of $D_{Pauli}\,$ are used in the Tripathi formula for alpha-nucleus and lithium-nucleus collisions. \noindent For alpha-nucleus collisions, \begin{eqnarray*} D_{Pauli}=2.77 - (8.0\times 10^{-3} A_t) + (1.8\times 10^{-5}A^{2}_t) \\ - 0.8/\{1+\exp[(250-KE)/75]\}\, \end{eqnarray*} \noindent For lithium-nucleus collisions, \begin{eqnarray*} D_{Pauli}=D_{Pauli}/3. \end{eqnarray*} Note that the Tripathi formula is not fully implemented in Geant4 and can only be used for projectile energies less than 1 GeV/nucleon. \section{Representative Cross Sections} \noindent Representative cross section results from the Sihver, Kox, Shen and Tripathi formulae in Geant4 are displayed in Table I and compared to the experimental measurements of Ref.~\cite{nnc.Kox87}. \section{Tripathi Formula for "light" Systems} \label{TripathiLight} For nuclear-nuclear interactions in which the projectile and/or target are light, Tripathi {\normalsize\it{et al}} \cite{RefTripathiLight} propose an alternative algorithm for determining the interaction cross section (implemented in the new class G4TripathiLightCrossSection). For such systems, Eq.\ref{eqn15.4} becomes: \begin{equation} \sigma _R = \pi r_0^2 [ A_p^{1/3} + A_t^{1/3} + \delta _E ]^2 (1 - R_C \frac{B}{E_{CM}})X_m \label{eqn15.6} \end{equation} \noindent $R_C$ is a Coulomb multiplier, which is added since for light systems Eq. \ref{eqn15.4} overestimates the interaction distance, causing $B$ (in Eq. \ref{eqn15.4}) to be underestimated. Values for $R_C$ are given in Table \ref{tab15.1}. \begin{equation} X_m = 1 - X_1 \exp \left( { - \frac{E}{{X_1 S_L }}} \right) \label{eqn15.7} \end{equation} \noindent where: \begin{equation} X_1 = 2.83 - \left( {3.1 \times 10^{ - 2} } \right)A_T + \left( {1.7 \times 10^{ - 4} } \right)A_T^2 \label{eqn15.8} \end{equation} \noindent except for neutron interactions with $^4$He, for which $X_1$ is better approximated to 5.2, and the function $S_L$ is given by: \begin{equation} S_L = 1.2 + 1.6\left[ {1 - \exp \left( { - \frac{E}{{15}}} \right)} \right] \label{eqn15.9} \end{equation} \noindent For light nuclear-nuclear collisions, a slightly more general expression for $C_E$ is used: \begin{equation} C_E = D\left[ {1 - \exp \left( { - \frac{E}{{T_1 }}} \right)} \right] - 0.292\exp \left( { - \frac{E}{{792}}} \right) \cdot \cos \left( {0.229E^{0.453} } \right) \label{eqn15.10} \end{equation} \noindent $D$ and $T_1$ are dependent on the interaction, and are defined in table \ref{tab15.2}. \begin{table} \begin{center} \caption{Representative total reaction cross sections} \label{nn-x-section-tb} \begin{tabular}{|c|c|c|c|c|c|c|c|} \hline Proj.&Target&Elab&Exp. Results&Sihver&Kox&Shen&Tripathi\\ &&[MeV/n]&[mb]&&&&\\ \hline &&&&&&&\\ $^{12}$C&$^{12}$C&30&1316$\pm$40&---&1295.04&1316.07&1269.24\\ &&83&965$\pm$30&---&957.183&969.107&989.96\\ &&200&864$\pm$45&868.571&885.502&893.854&864.56\\ &&300&858$\pm$60&868.571&871.088&878.293&857.414\\ &&870$^1$&939$\pm$50&868.571&852.649&857.683&939.41\\ &&2100$^1$&888$\pm$49&868.571&846.337&850.186&936.205\\ &$^{27}$Al&30&1748$\pm$85&---&1801.4&1777.75&1701.03\\ &&83&1397$\pm$40&---&1407.64&1386.82&1405.61\\ &&200&1270$\pm$70&1224.95&1323.46&1301.54&1264.26\\ &&300&1220$\pm$85&1224.95&1306.54&1283.95&1257.62\\ &$^{89}$Y&30&2724$\pm$300&---&2898.61&2725.23&2567.68\\ &&83&2124$\pm$140&---&2478.61&2344.26&2346.54\\ &&200&1885$\pm$120&2156.47&2391.26&2263.77&2206.01\\ &&300&1885$\pm$150&2156.47&2374.17&2247.55&2207.01\\ &&&&&&&\\ $^{16}$O&$^{27}$Al&30&1724$\pm$80&---&1965.85&1935.2&1872.23\\ &$^{89}$Y&30&2707$\pm$330&---&3148.27&2957.06&2802.48\\ &&&&&&&\\ $^{20}$Ne&$^{27}$Al&30&2113$\pm$100&---&2097.86&2059.4&2016.32\\ &&100&1446$\pm$120&1473.87&1684.01&1658.31&1667.17\\ &&300&1328$\pm$120&1473.87&1611.88&1586.17&1559.16\\ &$^{108}$Ag&300&2407$\pm$200$^2$&2730.69&3095.18&2939.86&2893.12\\ \hline \end{tabular} \end{center} 1. Data measured by Jaros et al. \cite{nnc.Jaros78} \\ 2. Natural silver was used in this measurement. \end{table} \begin{table} \begin{center} \caption{Coulomb multiplier for light systems \cite{RefTripathiLight}.} \label{tab15.1} % Give a unique label \begin{tabular}{cc} \hline\noalign{\smallskip} System & \(R_C\) \\ \noalign{\smallskip}\hline\noalign{\smallskip} p + d & 13.5 \\ p + $^3$He & 21 \\ p + $^4$He & 27 \\ p + Li & 2.2 \\ d + d & 13.5 \\ d + $^4$He & 13.5 \\ d + C & 6.0 \\ $^4$He + Ta & 0.6 \\ $^4$He + Au & 0.6 \\ \noalign{\smallskip}\hline \end{tabular} \end{center} \vspace*{2cm} % with the correct table height \end{table} \begin{table} \caption{Parameters D and T1 for light systems \cite{RefTripathiLight}.} \label{tab15.2} % Give a unique label % For LaTeX tables use \begin{tabular}{cccc} \hline\noalign{\smallskip} System & T1 [MeV] & D & G [MeV] \\ & & & ($^4$He + X only) \\ \noalign{\smallskip}\hline\noalign{\smallskip} p + X & 23 & \(1.85 + \frac{{0.16}}{{1 + \exp \left( {\frac{{500 - E}}{{200}}} \right)}}\) & (Not applicable) \\ n + X & 18 & \(1.85 + \frac{{0.16}}{{1 + \exp \left( {\frac{{500 - E}}{{200}}} \right)}}\) & (Not applicable) \\ d + X & 23 & \(1.65 + \frac{{0.1}}{{1 + \exp \left( {\frac{{500 - E}}{{200}}} \right)}}\) & (Not applicable) \\ $^3$He + X & 40 & 1.55 & (Not applicable) \\ $^4$He + $^4$He & 40 & \( \begin{array}{l} D = 2.77 - 8.0 \times 10^{ - 3} A_T \\ + 1.8 \times 10^{ - 5} A_T^2 \\ - \frac{{0.8}}{{1 + \exp \left( {\frac{{250 - E}}{G}} \right)}} \\ \end{array} \) & 300 \\ $^4$He + Be & 25 & (as for $^4$He + $^4$He) & 300 \\ $^4$He + N & 40 & (as for $^4$He + $^4$He) & 500 \\ $^4$He + Al & 25 & (as for $^4$He + $^4$He) & 300 \\ $^4$He + Fe & 40 & (as for $^4$He + $^4$He) & 300 \\ $^4$He + X (general) & 40 & (as for $^4$He + $^4$He) & 75 \\ \noalign{\smallskip}\hline \end{tabular} % Or use \vspace*{5cm} % with the correct table height \end{table} \section{Status of this document} \noindent 25.11.03 created by Tatsumi Koi\\ 28.11.03 grammar check and re-wording by D.H. Wright\\ 18.06.04 light system section added by Peter Truscott \\ \begin{latexonly} \begin{thebibliography}{99} \bibitem{nnc.Sihver93} L. Sihver et al., Phys. Rev. C47, 1225 (1993). \bibitem{nnc.Kox87} Kox et al. Phys. Rev. C35, 1678 (1987). \bibitem{nnc.Shen89} Shen et al. Nucl. Phys. A491, 130 (1989). \bibitem{nnc.Tripathi97} Tripathi et al, NASA Technical Paper 3621 (1997). \bibitem{nnc.Jaros78} Jaros et al, Phys. Rev. C 18 2273 (1978). \bibitem{RefTripathiLight} % Format for Journal Reference R K Tripathi, F A Cucinotta, and J W Wilson, "Universal parameterization of absorption cross-sections - Light systems," NASA Technical Paper TP-1999-209726, 1999. \end{thebibliography} \end{latexonly} \begin{htmlonly} \section{Bibliography} \begin{enumerate} \item L. Sihver et al., Phys. Rev. C47, 1225 (1993). \item Kox et al. Phys. Rev. C35, 1678 (1987). \item Shen et al. Nucl. Phys. A491, 130 (1989). \item Tripathi et al, NASA Technical Paper 3621 (1997). \item Jaros et al, Phys. Rev. C 18 2273 (1978). \item % Format for Journal Reference R K Tripathi, F A Cucinotta, and J W Wilson, "Universal parameterization of absorption cross-sections - Light systems," NASA Technical Paper TP-1999-209726, 1999. \end{enumerate} \end{htmlonly}