source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/hadronic/theory_driven/CrossSection/NNXSections.tex @ 1345

Last change on this file since 1345 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 15.6 KB
Line 
1
2\chapter{Total Reaction Cross Section in Nucleus-nucleus Reactions}
3\noindent
4The transportation of heavy ions in matter is a subject of much interest in
5several fields of science. An important input for simulations of this process
6is the total reaction cross section, which is defined as the total
7($\sigma_{T}$) minus the elastic ($\sigma_{el}$) cross section for
8nucleus-nucleus reactions:
9\begin{eqnarray*}
10\sigma_{R} = \sigma_{T} - \sigma_{el} .
11\end{eqnarray*}
12The total reaction cross section has been studied both theoretically and
13experimentally and several empirical parameterizations of it have been
14developed.  In Geant4 the total reaction cross sections are calculated using
15four such parameterizations: the Sihver\cite{nnc.Sihver93},
16Kox\cite{nnc.Kox87}, Shen\cite{nnc.Shen89} and Tripathi\cite{nnc.Tripathi97} 
17formulae.  Each of these is discussed in order below.
18
19\section{Sihver Formula}
20\noindent
21Of the four parameterizations, the Sihver formula has the simplest form:
22\begin{equation}
23\sigma_{R} = \pi r^{2}_{0}[A^{1/3}_{p} + A^{1/3}_{t} - b_{0} [A^{-1/3}_{p} + A^{-1/3}_{t}] ]^{2}
24\end{equation}
25where A$_{p}$ and A$_{t}$ are the mass numbers of the projectile and target
26nuclei, and
27\begin{eqnarray*}
28b_{0}=1.581-0.876(A^{-1/3}_{p} + A^{-1/3}_{t}) , 
29\end{eqnarray*}
30\begin{eqnarray*}
31r_{0}=1.36fm.
32\end{eqnarray*}
33It consists of a nuclear geometrical term $(A^{1/3}_p + A^{1/3}_t)$ and an
34overlap or transparency parameter ($b_0$) for nucleons in the nucleus.  The
35cross section is independent of energy and can be used for incident energies
36greater than 100 MeV/nucleon.
37
38\section{Kox and Shen Formulae}
39\noindent
40Both the Kox and Shen formulae are based on the strong absorption model.  They
41express the total reaction cross section in terms of the interaction radius
42$R$, the nucleus-nucleus interaction barrier $B$, and the center-of-mass energy
43of the colliding system $E_{CM}$:
44\begin{equation}
45\sigma_{R} = \pi R^{2}[1-\frac{B}{E_{CM}}].
46\end{equation}
47
48\noindent
49{\bf Kox formula:} Here $B$ is the Coulomb barrier ($B_c$) of the
50projectile-target system and is given by
51\begin{eqnarray*}
52B_{c}=\frac{Z_{t}Z_{p}e^{2}}{r_{C}(A^{1/3}_{t}+A^{1/3}_{p})},
53\end{eqnarray*}
54where $r_{C}$ = 1.3 fm, $e$ is the electron charge and $Z_t$, $Z_p$ are the
55atomic numbers of the target and projectile nuclei. $R$ is the interaction
56radius $R_{int}$ which in the Kox formula is divided into volume and surface
57terms:
58\begin{eqnarray*}
59R_{int}=R_{vol}+R_{surf} .
60\end{eqnarray*}
61$R_{vol}$ and $R_{surf}$ correspond to the energy-independent and
62energy-dependent components of the reactions, respectively.  Collisions which
63have relatively small impact parameters are independent of both energy and mass
64number.  These core collisions are parameterized by $R_{vol}$.  Therefore
65$R_{vol}$ can depend only on the volume of the projectile and target nuclei:
66\begin{eqnarray*}
67R_{vol}=r_{0}(A^{1/3}_{t}+A^{1/3}_{p}) .
68\end{eqnarray*}
69
70The second term of the interaction radius is a nuclear surface contribution and
71is parameterized by
72\begin{eqnarray*}
73R_{surf}=r_{0}[a\frac{A^{1/3}_{t}A^{1/3}_{p}}{A^{1/3}_{t}+A^{1/3}_{p}}-c]+D.
74\end{eqnarray*}
75
76The first term in brackets is the mass asymmetry which is related to the volume
77overlap of the projectile and target. The second term $c$ is an
78energy-dependent parameter which takes into account increasing surface
79transparency as the projectile energy increases.  $D$ is the neutron-excess
80which becomes important in collisions of heavy or neutron-rich targets.  It is
81given by
82\begin{eqnarray*}
83D=\frac{5(A_{t}-Z_{t})Z_{p}}{A_{p}A_{r}}.
84\end{eqnarray*}
85The surface component ($R_{surf}$) of the interaction radius is actually not
86part of the simple framework of the strong absorption model, but a better
87reproduction of experimental results is possible when it is used.
88
89The parameters $r_0$, $a$ and $c$ are obtained using a $\chi^{2}$ minimizing
90procedure with the experimental data. In this procedure the parameters $r_{0}$ 
91and $a$ were fixed while $c$ was allowed to vary only with the beam energy per
92nucleon.  The best $\chi^{2}$ fit is provided by $r_{0}$ = 1.1 fm and
93$a = 1.85$ with the corresponding values of $c$ listed in Table III and shown
94in Fig.~12 of Ref.~\cite{nnc.Kox87} as a function of beam energy per nucleon. 
95This reference presents the values of $c$ only in chart and figure form, which
96is not suitable for Monte Carlo calculations. Therefore a simple analytical
97function is used to calculate $c$ in Geant4. The function is:
98\begin{eqnarray*}
99c=-\frac{10}{x^{5}}+2.0 \mbox{   } \rm{for} \mbox{   } x \ge 1.5
100\end{eqnarray*}
101\begin{eqnarray*}
102c=(-\frac{10}{1.5^{5}}+2.0)\times(\frac{x}{1.5})^{3} \mbox{   } \rm{for} \mbox{   } x < 1.5 ,
103\end{eqnarray*}
104\begin{eqnarray*}
105x=log(KE) ,
106\end{eqnarray*}
107where $KE$ is the projectile kinetic energy in units of MeV/nucleon in the
108laboratory system. \\
109
110\noindent
111{\bf Shen formula:} as mentioned earlier, this formula is also based on the
112strong absorption model, therefore it has a structure similar to the Kox
113formula:
114\begin{equation}
115\sigma_{R} = 10\pi R^{2}[1-\frac{B}{E_{CM}}].
116\end{equation}
117However, different parameterized forms for $R$ and $B$ are applied.  The
118interaction radius $R$ is given by
119\begin{eqnarray*}
120R=r_{0}[A^{1/3}_{t}+A^{1/3}_{p}+1.85\frac{A^{1/3}_{t}A^{1/3}_{p}}{A^{1/3}_{t}+A^{1/3}_{p}}-C'(KE)] \\
121+\alpha\frac{5(A_{t}-Z_{t})Z_{p}}{A_{p}A_{r}}+\beta E^{-1/3}_{CM}\frac{A^{1/3}_{t}A^{1/3}_{p}}{A^{1/3}_{t}+A^{1/3}_{p}}
122\end{eqnarray*}
123where $\alpha$, $\beta$ and $r_0$ are
124\begin{eqnarray*}
125\alpha = 1 fm
126\end{eqnarray*}
127\begin{eqnarray*}
128\beta = 0.176MeV^{1/3} \cdot fm
129\end{eqnarray*}
130\begin{eqnarray*}
131r_{0}= 1.1 fm
132\end{eqnarray*}
133In Ref.~\cite{nnc.Shen89} as well, no functional form for $C'(KE)$ is given. 
134Hence the same simple analytical function is used by Geant4 to derive $c$ 
135values.
136
137The second term $B$ is called the nuclear-nuclear interaction barrier in the
138Shen formula and is given by
139\begin{eqnarray*}
140B=\frac{1.44Z_{t}Z_{p}}{r}-b\frac{R_{t}R_{p}}{R_{t}+R_{p}} (MeV)
141\end{eqnarray*}
142where $r$, $b$, $R_t$ and $R_p$ are given by
143\begin{eqnarray*}
144r=R_{t}+R_{p}+3.2fm
145\end{eqnarray*}
146\begin{eqnarray*}
147b=1MeV\cdot fm^{-1}     
148\end{eqnarray*}
149\begin{eqnarray*}
150R_{i}=1.12A^{1/3}_{i} -0.94A^{-1/3}_{i} ~ (i=t,p)
151\end{eqnarray*}
152The difference between the Kox and Shen formulae appears at energies below
15330 MeV/nucleon. In this region the Shen formula shows better agreement with the
154experimental data in most cases.
155
156\section{Tripathi formula}
157\noindent 
158Because the Tripathi formula is also based on the strong absorption model its
159form is similar to the Kox and Shen formulae:
160\begin{equation}
161\sigma_{R} = \pi r_0^2 (A^{1/3}_{p}+A^{1/3}_{t}+\delta_{E})^{2}[1-\frac{B}{E_{CM}}],
162\label{eqn15.4}
163\end{equation}
164where $r_0$ = 1.1 fm. In the Tripathi formula $B$ and $R$ are given by
165\begin{eqnarray*}
166B=\frac{1.44Z_{t}Z_{p}}{R}
167\end{eqnarray*}
168\begin{eqnarray*}
169R=r_{p}+r_{t}+\frac{1.2(A^{1/3}_{p}+A^{1/3}_{t})}{E^{1/3}_{CM}}
170\end{eqnarray*}
171where $r_i$ is the equivalent sphere radius and is related to the $r_{rms,i}$ 
172radius by
173
174\[
175r_{i}=1.29r_{rms,i} ~ (i=p,t) .
176\]
177
178$\delta_{E}$ represents the energy-dependent term of the reaction cross section
179which is due mainly to transparency and Pauli blocking effects. It is given by
180\begin{eqnarray*}
181\delta_{E}=1.85S+(0.16S/E^{1/3}_{CM})-C_{KE}+[0.91(A_{t}-2Z_{t})Z_{p}/(A_{p}A_{t})],
182\end{eqnarray*}
183where $S$ is the mass asymmetry term given by
184\begin{eqnarray*}
185S=\frac{A^{1/3}_{p}A^{1/3}_{t}}{A^{1/3}_{p}+A^{1/3}_{t}}.
186\end{eqnarray*}
187This is related to the volume overlap of the colliding system.  The last term
188accounts for the isotope dependence of the reaction cross section and
189corresponds to the $D$ term in the Kox formula and the second term of $R$ in
190the Shen formula.
191
192The term $C_{KE}$ corresponds to $c$ in Kox and $C'(KE)$ in Shen and is given
193by
194\begin{eqnarray*}
195C_{E}=D_{Pauli}[1-\exp(-KE/40)]-0.292\exp(-KE/792)\times\cos(0.229KE^{0.453}) .\,\\
196\end{eqnarray*}
197Here D$_{Pauli}$ is related to the density dependence of the colliding system,
198scaled with respect to the density of the $^{12}$C+$^{12}$C colliding
199system: \\
200\begin{eqnarray*}
201D_{Pauli} = 1.75 \frac{\rho_{A_p}+\rho_{A_t}}{\rho_{A_{\boldmath C}}+\rho_{A_{\boldmath C}}} .
202\end{eqnarray*}
203The nuclear density is calculated in the hard sphere model. $D_{Pauli}\,$ 
204simulates the modifications of the reaction cross sections caused by Pauli
205blocking and is being introduced to the Tripathi formula for the first time.
206The modification of the reaction cross section due to Pauli blocking plays an
207important role at energies above 100 MeV/nucleon.  Different forms of
208$D_{Pauli}\,$ are used in the Tripathi formula for alpha-nucleus and
209lithium-nucleus collisions.
210\noindent
211For alpha-nucleus collisions,
212\begin{eqnarray*}
213D_{Pauli}=2.77 - (8.0\times 10^{-3} A_t) + (1.8\times 10^{-5}A^{2}_t) \\
214 - 0.8/\{1+\exp[(250-KE)/75]\}\,
215\end{eqnarray*}
216\noindent
217For lithium-nucleus collisions,
218\begin{eqnarray*}
219D_{Pauli}=D_{Pauli}/3.
220\end{eqnarray*}
221Note that the Tripathi formula is not fully implemented in Geant4 and can only
222be used for projectile energies less than 1 GeV/nucleon.
223
224
225\section{Representative Cross Sections}
226
227
228\noindent
229Representative cross section results from the Sihver, Kox, Shen and Tripathi
230formulae in Geant4 are displayed in Table I and compared to the experimental
231measurements of Ref.~\cite{nnc.Kox87}.
232
233\section{Tripathi Formula for "light" Systems}
234\label{TripathiLight}
235For nuclear-nuclear interactions in which the projectile and/or target are
236light, Tripathi {\normalsize\it{et al}} \cite{RefTripathiLight} propose an
237alternative algorithm for determining the interaction cross section
238(implemented in the new class G4TripathiLightCrossSection).  For such systems,
239Eq.\ref{eqn15.4} becomes:
240
241\begin{equation}
242 \sigma _R  = \pi r_0^2 [ A_p^{1/3} + A_t^{1/3} + \delta _E ]^2
243(1 - R_C \frac{B}{E_{CM}})X_m
244\label{eqn15.6}
245\end{equation}
246
247\noindent $R_C$ is a Coulomb multiplier, which is added since for light
248systems Eq. \ref{eqn15.4} overestimates the interaction distance,
249causing $B$ (in Eq. \ref{eqn15.4}) to be underestimated.  Values for $R_C$ are
250given in Table \ref{tab15.1}.
251
252\begin{equation}
253X_m  = 1 - X_1 \exp \left( { - \frac{E}{{X_1 S_L }}} \right)
254\label{eqn15.7}
255\end{equation}
256
257\noindent where:
258
259\begin{equation}
260 X_1  = 2.83 - \left( {3.1 \times 10^{ - 2} } \right)A_T  + \left( {1.7 \times 10^{ - 4} } \right)A_T^2
261\label{eqn15.8}
262\end{equation}
263
264\noindent except for neutron interactions with $^4$He, for which $X_1$ is
265better approximated to 5.2, and the function $S_L$ is given by:
266
267\begin{equation}
268S_L  = 1.2 + 1.6\left[ {1 - \exp \left( { - \frac{E}{{15}}} \right)} \right]
269\label{eqn15.9}
270\end{equation}
271
272\noindent For light nuclear-nuclear collisions, a slightly more general
273expression for $C_E$ is used:
274
275\begin{equation}
276C_E  = D\left[ {1 - \exp \left( { - \frac{E}{{T_1 }}} \right)} \right] - 0.292\exp \left( { - \frac{E}{{792}}} \right) \cdot \cos \left( {0.229E^{0.453} } \right)
277\label{eqn15.10}
278\end{equation}
279
280\noindent $D$ and $T_1$ are dependent on the interaction, and are defined
281in table \ref{tab15.2}.
282
283\begin{table}
284\begin{center}
285\caption{Representative total reaction cross sections}
286\label{nn-x-section-tb}
287\begin{tabular}{|c|c|c|c|c|c|c|c|}
288\hline
289Proj.&Target&Elab&Exp. Results&Sihver&Kox&Shen&Tripathi\\
290&&[MeV/n]&[mb]&&&&\\
291\hline
292&&&&&&&\\
293$^{12}$C&$^{12}$C&30&1316$\pm$40&---&1295.04&1316.07&1269.24\\
294&&83&965$\pm$30&---&957.183&969.107&989.96\\
295&&200&864$\pm$45&868.571&885.502&893.854&864.56\\
296&&300&858$\pm$60&868.571&871.088&878.293&857.414\\
297&&870$^1$&939$\pm$50&868.571&852.649&857.683&939.41\\
298&&2100$^1$&888$\pm$49&868.571&846.337&850.186&936.205\\
299&$^{27}$Al&30&1748$\pm$85&---&1801.4&1777.75&1701.03\\
300&&83&1397$\pm$40&---&1407.64&1386.82&1405.61\\
301&&200&1270$\pm$70&1224.95&1323.46&1301.54&1264.26\\
302&&300&1220$\pm$85&1224.95&1306.54&1283.95&1257.62\\
303&$^{89}$Y&30&2724$\pm$300&---&2898.61&2725.23&2567.68\\
304&&83&2124$\pm$140&---&2478.61&2344.26&2346.54\\
305&&200&1885$\pm$120&2156.47&2391.26&2263.77&2206.01\\
306&&300&1885$\pm$150&2156.47&2374.17&2247.55&2207.01\\
307&&&&&&&\\
308$^{16}$O&$^{27}$Al&30&1724$\pm$80&---&1965.85&1935.2&1872.23\\
309&$^{89}$Y&30&2707$\pm$330&---&3148.27&2957.06&2802.48\\
310&&&&&&&\\
311$^{20}$Ne&$^{27}$Al&30&2113$\pm$100&---&2097.86&2059.4&2016.32\\
312&&100&1446$\pm$120&1473.87&1684.01&1658.31&1667.17\\
313&&300&1328$\pm$120&1473.87&1611.88&1586.17&1559.16\\
314&$^{108}$Ag&300&2407$\pm$200$^2$&2730.69&3095.18&2939.86&2893.12\\
315\hline
316\end{tabular}
317\end{center}
3181. Data measured by Jaros et al. \cite{nnc.Jaros78} \\ 
3192. Natural silver was used in this measurement.
320\end{table}
321
322\begin{table}
323\begin{center}
324\caption{Coulomb multiplier for light systems \cite{RefTripathiLight}.}
325\label{tab15.1}       % Give a unique label
326\begin{tabular}{cc}
327\hline\noalign{\smallskip}
328System & \(R_C\) \\
329\noalign{\smallskip}\hline\noalign{\smallskip}
330p + d       & 13.5 \\
331p + $^3$He  & 21 \\
332p + $^4$He  & 27 \\
333p + Li      & 2.2 \\
334d + d       & 13.5 \\
335d + $^4$He  & 13.5 \\
336d + C       & 6.0 \\
337$^4$He + Ta & 0.6 \\
338$^4$He + Au & 0.6 \\
339\noalign{\smallskip}\hline
340\end{tabular}
341\end{center}
342\vspace*{2cm}  % with the correct table height
343\end{table}
344
345\begin{table}
346\caption{Parameters D and T1 for light systems \cite{RefTripathiLight}.}
347\label{tab15.2}       % Give a unique label
348% For LaTeX tables use
349\begin{tabular}{cccc}
350\hline\noalign{\smallskip}
351System & T1 [MeV] & D & G [MeV] \\
352& & & ($^4$He + X only) \\
353\noalign{\smallskip}\hline\noalign{\smallskip}
354p + X & 23 &
355\(1.85 + \frac{{0.16}}{{1 + \exp \left( {\frac{{500 - E}}{{200}}} \right)}}\) &
356(Not applicable) \\
357
358n + X & 18 & 
359\(1.85 + \frac{{0.16}}{{1 + \exp \left( {\frac{{500 - E}}{{200}}} \right)}}\) &
360(Not applicable) \\
361
362d + X & 23 &
363\(1.65 + \frac{{0.1}}{{1 + \exp \left( {\frac{{500 - E}}{{200}}} \right)}}\) &
364(Not applicable) \\
365
366$^3$He + X & 40 & 1.55 & (Not applicable) \\
367
368$^4$He + $^4$He & 40 &
369\(
370\begin{array}{l}
371 D = 2.77 - 8.0 \times 10^{ - 3} A_T  \\ 
372  + 1.8 \times 10^{ - 5} A_T^2  \\ 
373  - \frac{{0.8}}{{1 + \exp \left( {\frac{{250 - E}}{G}} \right)}} \\ 
374 \end{array}
375\) &
376300 \\
377
378$^4$He + Be & 25 & (as for $^4$He + $^4$He) & 300 \\
379$^4$He + N  & 40 & (as for $^4$He + $^4$He) & 500 \\
380$^4$He + Al & 25 & (as for $^4$He + $^4$He) & 300 \\
381$^4$He + Fe & 40 & (as for $^4$He + $^4$He) & 300 \\
382$^4$He + X (general) & 40 & (as for $^4$He + $^4$He) & 75 \\
383
384\noalign{\smallskip}\hline
385\end{tabular}
386% Or use
387\vspace*{5cm}  % with the correct table height
388\end{table}
389
390\section{Status of this document}
391\noindent
39225.11.03  created by Tatsumi Koi\\
39328.11.03  grammar check and re-wording by D.H. Wright\\
39418.06.04  light system section added by Peter Truscott \\
395
396\begin{latexonly}
397
398\begin{thebibliography}{99}
399
400\bibitem{nnc.Sihver93} 
401 L. Sihver et al., Phys. Rev. C47, 1225 (1993).
402
403\bibitem{nnc.Kox87} 
404Kox et al. Phys. Rev. C35, 1678 (1987).
405
406\bibitem{nnc.Shen89} 
407Shen et al. Nucl. Phys. A491, 130 (1989).
408
409\bibitem{nnc.Tripathi97} 
410Tripathi et al, NASA Technical Paper 3621 (1997).
411
412\bibitem{nnc.Jaros78} 
413Jaros et al, Phys. Rev. C 18 2273 (1978).
414
415\bibitem{RefTripathiLight}
416% Format for Journal Reference
417R K Tripathi, F A Cucinotta, and J W Wilson, "Universal parameterization of absorption cross-sections - Light systems," NASA Technical Paper TP-1999-209726, 1999.
418
419\end{thebibliography}
420
421\end{latexonly}
422
423\begin{htmlonly}
424
425\section{Bibliography}
426
427\begin{enumerate}
428\item 
429 L. Sihver et al., Phys. Rev. C47, 1225 (1993).
430
431\item 
432Kox et al. Phys. Rev. C35, 1678 (1987).
433
434\item 
435Shen et al. Nucl. Phys. A491, 130 (1989).
436
437\item 
438Tripathi et al, NASA Technical Paper 3621 (1997).
439
440\item 
441Jaros et al, Phys. Rev. C 18 2273 (1978).
442
443\item
444% Format for Journal Reference
445R K Tripathi, F A Cucinotta, and J W Wilson, "Universal parameterization of absorption cross-sections - Light systems," NASA Technical Paper TP-1999-209726, 1999.
446
447\end{enumerate}
448
449\end{htmlonly}
450
Note: See TracBrowser for help on using the repository browser.