source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/hadronic/theory_driven/Evaporation/FissionProcessSimulation.tex @ 1222

Last change on this file since 1222 was 1222, checked in by garnier, 15 years ago

CVS update

File size: 7.2 KB
Line 
1\section{Fission process simulation.}
2
3\subsection{Atomic number distribution of fission products.}
4
5\hspace{1.0em}As follows from experimental data \cite{VH73} mass
6distribution of fission products consists of the symmetric and the
7asymmetric components:
8\begin{equation}
9\label{FPS1} F(A_f) = F_{sym}(A_f) + \omega F_{asym}(A_f),
10\end{equation}
11where $\omega(U,A,Z)$ defines relative contribution of each component
12and it depends from excitation energy $U$ and $A,Z$ of fissioning
13nucleus.  It was found in \cite{ABIM93} that experimental data can be
14approximated with a good accuracy, if one take
15\begin{equation}
16\label{FPS2} F_{sym}(A_f) = \exp{[-\frac{(A_f - A_{sym})^2}{2\sigma_{sym}^2}]}
17\end{equation}
18and
19\begin{equation}
20\begin{array}{c}
21\label{FPS3} F_{asym}(A_f) = \exp{[-\frac{(A_f - A_{2})^2}{2\sigma_{2}^2}]} +
22\exp{[-\frac{{A_f - (A - A_{2})}^2}{2\sigma_{2}^2}]} + \\
23+ C_{asym}\{\exp{[-\frac{(A_f - A_{1})^2}{2\sigma_{1}^2}]} +
24\exp{[-\frac{{A_f - (A - A_{1})}^2}{2\sigma_{2}^2}]}\},
25\end{array}
26\end{equation}
27where $A_{sym} = A/2$, $A_1$ and $A_2$ are the mean values and
28$\sigma^2_{sim}$, $\sigma^2_1$ and $\sigma^2_2$ are dispertions of the
29Gaussians respectively.  From an analysis of experimental data
30\cite{ABIM93} the parameter $C_{asym} \approx 0.5$ was defined and the
31next values for dispersions:
32\begin{equation}
33\label{FPS4} \sigma^2_{sym} = \exp{(0.00553U + 2.1386)},
34\end{equation} 
35where $U$ in MeV,
36\begin{equation}
37\label{FPS5} 2\sigma_1 = \sigma_2 = 5.6 \ MeV
38\end{equation}
39for $A \leq 235$ and
40\begin{equation}
41\label{FPS6} 2\sigma_1 = \sigma_2 = 5.6 + 0.096 (A - 235) \ MeV
42\end{equation}
43for $A > 235$ were found.
44
45The weight $\omega(U,A,Z)$ was approximated as follows
46\begin{equation}
47\label{FPS7} \omega = \frac{\omega_{a} - F_{asym}(A_{sym})}
48{1 - \omega_a F_{sym}((A_1 + A_2)/2)}.
49\end{equation}
50The values of $\omega_a$ for nuclei with $96 \geq Z \geq 90$ were
51approximated by
52\begin{equation}
53\label{FPS8} \omega_a(U) = \exp{(0.538U - 9.9564)}
54\end{equation}
55for $U \leq 16.25$ MeV,
56\begin{equation}
57\label{FPS9} \omega_a(U) = \exp{(0.09197U - 2.7003)}
58\end{equation}
59for $U > 16.25$ MeV and
60\begin{equation}
61\label{FPS10} \omega_a(U) = \exp{(0.09197U - 1.08808)}
62\end{equation}
63for $z = 89$.
64For nuclei with $Z \leq 88$ the authors of \cite{ABIM93} constracted
65the following approximation:
66\begin{equation}
67\label{FPS11}\omega_a(U) =
68\exp{[0.3(227 - a)]} \exp{ \{0.09197[U - (B_{fis} - 7.5)]
69- 1.08808 \}},
70\end{equation}
71where for $A > 227$ and $U < B_{fis} - 7.5$ the corresponding factors occuring
72in exponential functions vanish.
73
74\subsection{Charge distribution of fission products.}
75
76\hspace{1.0em}At given mass of fragment $A_f$ the
77experimental data \cite{VH73} on the charge $Z_f$ distribution of
78fragments are well approximated by Gaussian with dispertion
79$\sigma^2_{z} = 0.36$ and the average $<Z_f>$ is described by
80expression:
81\begin{equation}
82\label{FPS12} <Z_f> = \frac{A_f}{A}Z + \Delta Z,
83\end{equation}
84when parameter $\Delta Z = -0.45$ for $A_f \geq 134$, $\Delta Z = -
850.45(A_f -A/2)/(134 - A/2)$ for $ A - 134 < A_f < 134$ and $\Delta Z =
860.45$ for $A \leq A - 134$.
87
88After sampling of fragment atomic masses numbers and fragment charges,
89we have to check that fragment ground state masses do not exceed initial
90energy and calculate the maximal fragment kinetic energy
91\begin{equation}
92\label{FPS13a}T^{max} < U + M(A,Z) - M_1(A_{f1}, Z_{f1}) - M_2(A_{f2}, Z_{f2}),
93\end{equation}
94where $U$ and $M(A,Z)$ are the excitation energy and mass of initial
95nucleus,  $M_1(A_{f1},
96Z_{f1})$,  and $M_2(A_{f2}, Z_{f2})$ are masses
97of the first and second fragment, respectively.
98
99 
100\subsection{Kinetic energy distribution of fission products.}
101
102\hspace{1.0em}We use the empiricaly defined \cite{VKW85} dependence of
103the average kinetic energy $<T_{kin}>$ (in MeV) of fission fragments on
104the mass and the charge of a fissioning nucleus:
105\begin{equation}
106\label{FPS13}<T_{kin}> = 0.1178 Z^2/A^{1/3} + 5.8.
107\end{equation}
108This energy is distributed differently in cases of symmetric and
109asymmetric modes of fission.  It follows from the analysis of data
110\cite{ABIM93} that in the asymmetric mode, the average kinetic energy of
111fragments is higher than that in the symmetric one by approximately
112$12.5$ MeV. To approximate the average numbers of kinetic energies
113$<T_{kin}^{sym}$ and $<T_{kin}^{asym}>$ for the symmetric and asymmetric
114modes of fission the authors of \cite{ABIM93} suggested empirical
115expressions:
116\begin{equation}
117\label{FPS14} <T_{kin}^{sym}> = <T_{kin}> - 12.5 W_{asim},
118\end{equation}
119\begin{equation}
120\label{FPS15} <T_{kin}^{asym}> = <T_{kin}> + 12.5 W_{sim},
121\end{equation} 
122where
123\begin{equation}
124\label{FPS16} W_{sim} = \omega \int F_{sim}(A)dA/\int F(A)dA
125\end{equation}
126and
127\begin{equation}
128\label{FPS17} W_{asim} = \int F_{asim}(A)dA/\int F(A)dA,
129\end{equation} 
130respectively. In the symmetric fission the experimental data for the
131ratio of the average kinetic energy of fission fragments
132$<T_{kin}(A_f)>$ to this maximum energy $<T^{max}_{kin}>$ as a function
133of the mass of a larger fragment $A_{max}$ can be approximated by
134expressions
135\begin{equation}
136\label{FPS18} <T_{kin}(A_f)>/<T^{max}_{kin}> =
1371 - k [(A_f - A_{max})/A]^2
138\end{equation}
139for $A_{sim} \leq A_f \leq A_{max} + 10$ and
140\begin{equation}
141\label{FPS19} <T_{kin}(A_f)>/<T^{max}_{kin}> =
1421 - k(10/A)^2 - 2 (10/A)k(A_f - A_{max} - 10)/A
143\end{equation}
144for $A_f > A_{max} + 10$, where $A_{max} = A_{sim}$ and $k = 5.32$ and
145$A_{max} = 134$ and $k = 23.5$ for symmetric and asymmetric fission
146respectively.  For both modes of fission the distribution over the
147kinetic energy of fragments $T_{kin}$ is choosen Gaussian with their own
148average values $<T_{kin}(A_f)>= <T_{kin}^{sym}(A_f)>$ or
149$<T_{kin}(A_f)>=<T_{kin}^{asym}(A_f)>$ and dispersions $\sigma^2_{kin}$
150equal $8^2$ MeV or $10^2$ MeV$^2$ for symmetrical and asymmetrical
151modes, respectively.
152
153\subsection{Calculation of the excitation energy of fission products.}
154
155\hspace{1.0em}The total excitation energy of fragments $U_{frag}$ 
156can be defined according to equation:
157\begin{equation}
158\label{FPS21} U_{frag} = U + M(A,Z) - M_1(A_{f1}, Z_{f1}) - M_2(A_{f2}, Z_{f2}) -
159T_{kin},
160\end{equation}
161where $U$ and $M(A,Z)$ are the excitation energy and mass of initial
162nucleus, $T_{kin}$ is the fragments kinetic energy, $M_1(A_{f1},
163Z_{f1})$,  and $M_2(A_{f2}, Z_{f2})$ are masses
164of the first and second fragment, respectively.
165
166The value of excitation energy of fragment $U_f$ determines the fragment
167temperature ($T = \sqrt{U_f/a_f}$, where $a_f \sim A_f$ is the parameter
168of fragment level density).  Assuming that after disintegration
169fragments have the same temperature as initial nucleus than the total
170excitation energy will be distributed between fragments in proportion to
171their mass numbers one obtains
172\begin{equation}
173\label{FPS22} U_f = U_{frag} \frac{A_f}{A}.
174\end{equation}
175
176\subsection{Excited fragment momenta.}
177
178\hspace{1.0em}Assuming that fragment kinetic energy $T_f= 
179P^2_f/(2(M(A_{f},Z_{f}+U_f)$ we are
180able to calculate the absolute value of fragment c.m. momentum
181\begin{equation}
182\label{FPS23}
183P_f=\frac{(M_1(A_{f1},Z_{f1}+U_{f1})(M_2(A_{f2},Z_{f2}+U_{f2})}{
184M_1(A_{f1},Z_{f1})+U_{f1} + M_2(A_{f2},Z_{f2})+U_{f2}}T_{kin}.
185\end{equation}
186and its components, assuming fragment isotropical distribution.
Note: See TracBrowser for help on using the repository browser.