source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/hadronic/theory_driven/FermiBreakup/FermiBreakSim.tex @ 1211

Last change on this file since 1211 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 4.8 KB
Line 
1\section{Fermi break-up simulation for light nuclei.}
2\hspace{1.0em} The GEANT4 Fermi break-up model is capable to predict
3final states as result of an excited nucleus with atomic number $A < 17$ 
4statistical break-up.
5
6For light nuclei  the values of excitation
7energy per nucleon are often comparable with nucleon binding
8energy. Thus a light excited nucleus breaks into two or more fragments
9with branching given by available phase space.  To describe a process of
10nuclear disassembling the so-called Fermi break-up model is used
11\cite{Fermi50}, \cite{Kretz61}, \cite{EG67}.  This statistical approach
12was first used by Fermi \cite{Fermi50} to describe the multiple
13production in high energy nucleon collision.
14
15
16
17\subsection{ Allowed channel.} 
18
19\hspace{1.0em}The channel will be allowed for decay, if the total
20kinetic energy $E_{kin}$ of all fragments of the given channel at the
21moment of break-up is positive. This energy can be calculated according
22to equation:
23\begin{equation}
24\label{FBS1}E_{kin} = U+M(A,Z)-E_{Coulomb} - \sum_{b=1}^{n}(m_b+\epsilon_{b}),
25\end{equation} 
26$m_{b}$ and $\epsilon_{b}$ are masses and excitation energies of fragments,
27respectively, $E_{Coulomb}$ is the Coulomb barrier for a given channel. It
28is approximated by
29\begin{equation}
30\label{FBS2}E_{Coulomb} = \frac{3}{5} \frac{e^2}{r_{0}}(1 +
31\frac{V}{V_{0}})^{-1/3}
32(\frac{Z^2}{A^{1/3}}-\sum_{b=1}^{n}\frac{Z^2}{A_b^{1/3}}),
33\end{equation}
34where $V_0$ is the volume of the system corresponding to the normal
35nuclear matter density and $\kappa = \frac{V}{V_0}$ is a parameter (
36$\kappa = 1$ is used).
37
38\subsection{Break-up probability.} 
39
40\hspace{1.0em}The total  probability  for nucleus to
41break-up into $n$ componets  (nucleons, deutrons, tritons, alphas etc)
42in the final state is given by
43\begin{equation}
44\label{FBS3}W(E,n) = (V/\Omega)^{n-1}\rho_{n}(E),
45\end{equation}
46where $\rho_{n}(E)$ is the density of a number of final states, $V$ is
47the volume of decaying system and $\Omega = (2\pi \hbar)^{3}$ is the
48normalization volume.  The density $\rho_{n}(E)$ can be defined as a
49product of three factors:
50\begin{equation}
51\label{FBS4}\rho_{n}(E)=M_{n}(E)S_nG_n.
52\end{equation}
53The first one is the phase space factor defined as
54\begin{equation}
55\label{FBS5}M_{n} = \int_{-\infty}^{+\infty}...\int_{-\infty}^{+\infty}
56\delta(\sum_{b=1}^{n} {\bf p_{b}}) \delta(E-\sum_{b=1}^{n}\sqrt{p^2+m^2_b})
57\prod_{b=1}^{n} d^3p_b,
58\end{equation}
59where ${\bf p_b}$ is fragment $b$ momentum. The second one is the spin
60factor
61\begin{equation}
62\label{FBS6} S_n = \prod_{b=1}^{n}(2s_b+1),
63\end{equation}
64which gives the number of states with different spin orientations.  The
65last one is the permutation factor
66\begin{equation}
67\label{FBS7}G_n = \prod_{j=1}^{k}\frac{1}{n_j !},
68\end{equation}
69which takes into account identity of components in final state. $n_j$ is
70a number of components of $j$- type particles and $k$ is defined by $n =
71\sum_{j=1}^{k}n_{j}$).
72
73In non-relativistic case (Eq. ($\ref{FBS10}$) the integration in
74Eq. ($\ref{FBS5}$) can be evaluated analiticaly (see e. g. \cite{BBB58}).
75The probability for a nucleus with energy $E$ disassembling into $n$
76fragments with masses $m_b$, where $b = 1,2,3,...,n$ equals
77\begin{equation}
78\label{FBS8} W(E_{kin},n) =
79S_nG_n (\frac{V}{\Omega})^{n-1}(\frac{1}{\sum_{b=1}^{n}m_b}
80\prod_{b=1}^{n}
81m_{b})^{3/2}
82 \frac{(2\pi)^{3(n-1)/2}}{\Gamma(3(n-1)/2)}E_{kin}^{3n/2-5/2},
83\end{equation}
84where $\Gamma(x)$ is  the gamma function.
85
86\subsection{Fermi break-up model parameter.} 
87
88\hspace{1.0em}Thus the Fermi break-up model has only one free parameter
89$V$ is the volume of decaying system, which can be calculated as
90follows:
91\begin{equation}
92\label{FBS9} V = 4\pi R^3/3 = 4\pi r_{0}^3 A/3,
93\end{equation}
94where $r_{0} = 1.4 $ fm is used.
95
96\subsection{ Fragment characteristics.}
97
98We take into account the formation of fragments in their ground and
99low-lying excited states, which are stable for nucleon
100emission. However, several unstable fragments with large lifetimes:
101$^{5}He$, $^{5}Li$, $^{8}Be$, $^{9}B$ etc are also considered.  Fragment
102characteristics $A_b$, $Z_b$, $s_b$ and $\epsilon_b$ are taken from
103\cite{AS81}.
104
105
106\subsection{ MC procedure.} 
107
108\hspace{1.0em}The nucleus break-up is described by the Monte Carlo (MC)
109procedure. We randomly (according to probability Eq. ($\ref{FBS8}$) and
110condition Eq. ($\ref{FBS1}$)) select decay channel. Then for given
111channel we calculate kinematical quantities of each fragment according
112to $n$-body phase space distribution:
113\begin{equation}
114\label{FBS10}M_{n} = \int_{-\infty}^{+\infty}...\int_{-\infty}^{+\infty}
115\delta(\sum_{b=1}^{n} {\bf p_{b}}) \delta(\sum_{b=1}^{n}
116\frac{p^2_b}{2m_b}-E_{kin})
117\prod_{b=1}^{n} d^3p_b.
118\end{equation}
119The Kopylov's sampling procedure \cite{Kopylov70} is applied.  The angular
120distributions for emitted fragments are considered to be isotropical.
Note: See TracBrowser for help on using the repository browser.