source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/hadronic/theory_driven/GammaInteraction/HighEnergyGammaInteraction.tex @ 1211

Last change on this file since 1211 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 4.3 KB
Line 
1\section{The high energy $\gamma$-nucleon and $\gamma$-nucleus
2 interactions.}
3 
4\hspace{1.0em}To simulate high energy photon interactions with nucleon and
5nucleus we use the approach\cite{PRW95}.
6We consider the following kinematic
7variables for $\gamma$-nucleon
8scattering: the Bjorken-$x$ variable defined as $x=Q^2/2m\nu$ with $Q^2$, $\nu$
9and $m$ the photon virtuality, the photon energy and nucleon mass,
10respectively.
11The the squared total energy of the $\gamma$-nucleon system is given by
12$s=Q^2(1-x)/x + m^2$. We restrict consideration to
13 the range of small $x$-values and  $Q^2$ is much
14less than $s$.
15
16The Generalized Vector Dominance Model (GVDM) \cite{BSY78}
17 assumes that the virtual photon
18fluctuates into intermediate $q\bar{q}$-states $V$ of mass $M$ which
19 subsequently may
20interact with a nucleon $N$.
21Thus the total photon-nucleon cross section
22 can be expressed by a relation \cite{PRW95}:
23\begin{equation}
24\begin{array}{c}
25\label{HEGI1}\sigma_{\gamma N}(s,Q^2)=4\pi\alpha_{em}\int_{M^2_0}^{M^2_{1}}
26dM^2D(M^2)\times \\
27\times (\frac{M^2}{M^2+Q^2})^2(1+\epsilon\frac{Q^2}{M^2})\sigma_{VN}(s,Q^2),
28\end{array}
29\end{equation}
30where integration over $M^2$ should be performed between $M^2_0=4m^2_{\pi}$
31 and $M^2=s$.
32Here $\alpha_{em} = e^2/4\pi = 1/137$ and the density
33 of $q\bar{q}$-system per
34unit mass-squared is given by
35\begin{equation}
36\label{HEGI2}D(M^2)= \frac{R_{e^{+}e^{-}}(M^2)}{12\pi^2M^2},
37\end{equation}
38\begin{equation}
39\label{HEGI3} R_{e^{+}e^{-}}(M^2)=\frac{\sigma_{e^{+}e^{-}\rightarrow
40hadrons}(M^2)}{\sigma_{e^{+}e^{-}\rightarrow
41\mu^{+}\mu^{-}}(M^2)}\approx 3\Sigma_{f}e^2_{f},
42\end{equation}
43where $e^2_{f}$ the squared charge of quark with flavor $f$.
44$\epsilon$ is the
45ratio between the fluxes of longitudinally
46 and transversally polarized photons.
47
48Similarly the
49 inelastic cross section for the scattering of a $\gamma$ with virtuality
50$Q^2$ and with  a nucleus $A$ at impact parameter $B$ 
51and the $\gamma$-nucleon c.m.
52energy squared $s$ is given by \cite{ERR97}:
53\begin{equation}
54\begin{array}{c}
55\label{HEGI4}\sigma_{\gamma A}(s,Q^2,B)=4\pi\alpha_{em}\int_{M^2_0}^{M^2_{1}}
56dM^2D(M^2)\times \\
57\times (\frac{M^2}{M^2+Q^2})^2(1+\epsilon\frac{Q^2}{M^2})\sigma_{VA}(s,Q^2,B),
58\end{array}
59\end{equation}
60
61To calculate $\gamma$-nucleon or $\gamma$-nucleus inelastic cross sections
62we need model for the $M^2$-,
63 $Q^2$- and $s$-dependence of the $\sigma_{VN}$ or $\sigma_{VA}$. For
64 these we  apply the
65Gribov-Regge approach, similarly as it was done for $h$-nucleon or $h$-nucleus
66inelastic cross sections.
67
68The
69 effective cross section for the interaction of a $q\bar{q}$-system with
70squared mass $M^2$ with nucleus for the coherence length
71\begin{equation}
72\label{HEGI5} d=\frac{2\nu}{M^2+Q^2}
73\end{equation}
74exceeding the average distance between two nucleons
75can be written as follows
76\begin{equation}
77\begin{array}{c}
78\label{HEGI6}\sigma_{V A}(s,Q^2,B)=\int \prod_{i=1}^{A} 
79d^3 r_i\rho_A({\bf r}_i)
80\times \\
81\times (1 - |\prod_{i=1}^{A}[1-u(s,Q^2,M^2, b^2_i)]|^2).
82\end{array}
83\end{equation}
84Here the amplitude (eikonal)
85$u(s,Q^2,M^2, b^2_i)$ for the interaction of
86the hadronic fluctuation with $i$-th nucleon
87is given by \cite{ERR97}
88\begin{equation}
89\begin{array}{c}
90\label{HEGI7}u(s,Q^2,M^2,{\bf b}_i)=
91\frac{\sigma_{VN}(s,Q^2,M^2)} {8 \pi \lambda(s,Q^2,M^2)} \times \\
92\times (1-i \rho \exp{[-\frac{b^2}{4\lambda(s,Q^2,M^2)}]},
93\end{array}
94\end{equation}
95where $\rho\approx 0$ is the ratio of real and imaginary parts of scattering
96amplitude at $0$ angle.
97The amplitude parameters: the effective $q\bar{q}$-nucleon cross section 
98\begin{equation}
99\label{HEGI8} \sigma_{VN}(s,Q^2,M^2)=\frac{\tilde{\sigma}_{VN}(s,Q^2)}{M^2+Q^2+C^2},
100\end{equation}
101where $C^2=2$ \ GeV$^2$,
102and
103\begin{equation}
104\label{HEGI9}\lambda(s,Q^2,M^2)=2+\frac{m^2_{\rho}}{M^2+Q^2} +
105\alpha_{P}^{\prime}
106\ln{(\frac{s}{M^2+Q^2})}.
107\end{equation}
108The values of $\tilde{\sigma}_{VN}(s,Q^2)$ are calculated in paper
109\cite{ERR97}.
110It was shown \cite{ERR97} that $Q^2$ dependence of $\sigma_{VN}(s,Q^2)$ 
111is very week at $Q^2 < m^2_{rho} + C^2$, where $m_{\rho}$ is
112$\rho$-meson mass, and we omitted this dependence. We also use
113$\sigma_{VN}(s,Q^2)$ calculated  in \cite{ERR97} at $M^2=m^2_{rho}$.
114
115 If coherence length is smaller that an internuclear distance integrated
116over $B$ then cross section
117$\sigma_{VA}=A\sigma_{VN}$.
118
Note: See TracBrowser for help on using the repository browser.