source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/hadronic/theory_driven/Incl/Incl.tex

Last change on this file was 1211, checked in by garnier, 15 years ago

CVS update

File size: 20.7 KB
Line 
1\chapter{INCL 4.2 Cascade and ABLA V3 Evaporation with Fission}
2
3\section{Introduction}
4
5There is a renewed interest in the study of spallation reactions. This
6is largely due to new technological applications, such as Accelerator
7Driven Systems, consisting of sub-critical nuclear reactor and
8particle accelerator. These applications require optimized spallation
9targets or spallation sources. This type of problem has typically a large number
10of parameters and thus it cannot be solved by trial and error
11method. One has to rely on simulations, which implies that very
12accurate simulation tools need to be developed and their validity and
13accuracy needs also to be assessed.
14
15Above the energy 200 MeV it is necessary to use reliable models due to
16the prohibitive number of open channels. The most appropriate modeling
17technique in this energy region is intranuclear cascade (INC) combined
18with evaporation model. One such pair of models is the Li\`ege cascade
19model INCL4.2 coupled with ABLA evaporation model. The strategy adopted
20by the INCL4.2 cascade is to improve the quasi-classical treatment of
21physics without relying on too many free parameters.
22
23This chapter introduces the physics provided by INCL4.2 and ABLA V3 codes as implemented in Geant4.
24Tables \ref{tbl:inclsummary} and \ref{tbl:ablasummary} will summarize the key features
25and provides references describing in detail the physics.
26
27
28\section{INCL4.2 cascade} 
29\label{sec:inclmodel}
30
31INCL4.2 is a Monte Carlo simulation incorporating aforementioned cascade
32physics principles. INCL4.2 cascade algorithm consists of an
33initialization stage and the actual data processing stage.
34
35
36The INCL4.2 cascade can be used to simulate the collisions between
37bullet particles and nuclei. The supported bullet particles and the
38interface classes supporting them are presented in table
39\ref{tbl:inclsummary}.
40
41
42\begin{table}[ht]
43  \caption{INCL 4.2 (located in the Geant4
44    directory {\tt source/\-processes/\-hadronic/\-models/\-incl})
45    feature summary.}
46\label{tbl:inclsummary}
47\vskip1cm
48\begin{center}
49\begin{tabular}{l|l}
50\hline
51{\bf Requirements} & \\
52External data file & G4ABLA3.0 available at Geant4 site \\
53Environment variable & {\tt G4ABLADATA} \\ 
54for external data & \\
55\hline
56{\bf Usage}      & \\
57Physics list     & Not yet implemented, \\
58                 & instead use the interfaces directly. \\
59\hline
60{\bf Interfaces} &     \\
61{\tt G4InclCascadeInterface} &  h--A \\
62{\tt G4InclLightIonInterface} &  A--A \\
63\hline
64{\bf Projectile particles} & proton, neutron \\
65                 & pions ($\pi^+$, $\pi^0$, $\pi^-$) \\
66                 & deuteron, triton \\ 
67                 & $\alpha$, $^3$He \\ 
68\hline
69{\bf Energy range} & 200 MeV - 3 GeV \\
70\hline
71{\bf Target nuclei} & \\
72Lightest applicable & Carbon, C \\
73Heaviest            & Uranium, U \\
74\hline
75{\bf Features} & No ad-hoc parameters \\
76                    & Woods-Saxon nuclear potential \\
77                    & Coulomb barrier \\
78                    & Non-uniform time-step \\
79                    & Pion and delta production cross sections \\
80                    & Delta decay \\
81                    & Pauli blocking \\
82\hline
83{\bf Misc.}         & 5 classes (see fig. \ref{fig:uml}), 8k lines \\
84                    & 0.9 $<$ speed C++/F77 $<$ 1.1 \\
85\hline
86{\bf References}    & Key reference \cite{Boudard02a}, see also \cite{Cugnon97a, Cugnon81a, Cugnon87a, Cugnon89a} \\
87\hline
88\end{tabular}
89\end{center}
90\end{table}
91
92The momenta and positions of the nucleons inside the nuclei are
93determined at the beginning of the simulation run by modeling the
94nucleus as a free fermi gas in a static potential well. The cascade is
95modeled by tracking the nucleons and their collisions. The collisions
96are assumed to be well separated in space and time.
97
98The possible reactions inside the nucleus are
99\begin{itemize}
100\item $NN \rightarrow N \Delta$ and $N \Delta \rightarrow NN$ 
101\item $\Delta \rightarrow \pi N$ and $\pi N \rightarrow \Delta$
102\end{itemize}
103
104%\begin{figure}[ht]
105%\begin{center}
106%\includegraphics[scale=0.6]{Pb208Proton1GeV.eps}
107%\includegraphics[angle=0,scale=0.6]{hadronic/theory_driven/Incl/Pb208Proton1GeV.eps}
108%\end{center}
109%\caption{Colliding 1 GeV proton to Pb208 target. Here is presented the
110%mass number of the outcoming particles.}
111%\end{figure}
112
113\subsection{Model limits}
114
115
116
117The INCL4.2 model has certain limitations with respect to the bullet
118particle energy and target nucleus type. The supported energy range
119for bullets is: 200 MeV - 3 GeV. Acceptable target nuclei range from
120Carbon to Uranium.
121
122% Maybe too basic stuff...
123% \chapter{INCL and ABLA models}
124
125% Hadronic interactions can be modeled with cascade
126% models when we deal with so called medium energy range between 100 MeV
127% and 10 GeV \cite{thebook}.
128% %The medium energy range lies between 100 MeV and 10 GeV.
129% In this energy range we can simplify the problem with certain
130% assumptions and approximations. In this chapter we outline the basic
131% features of medium energy hadronic physics and how INCL and ABLA
132% models implement them.
133
134% %\section{Physics in intermediate energy range}
135
136% \section{Intra-nuclear cascade (INC)}
137% \index{intranuclear cascade}
138% \label{sec:inc}
139
140% Atomic nuclei can, in principle, be described in terms of quantum
141% mechanics. However, since the nucleus is fairly complex multi-particle
142% system purely quantum mechanical approach is usually not feasible for
143% describing nuclear reactions in the intermediate energy range. The INC
144% model of these processes is a semiclassical description of collision
145% between a particle and a nucleus.
146
147% The basic problem can be divided into two steps. First is the actual
148% \emph{cascade} stage.  At this stage each nucleon collides few times
149% in the nucleus. The number of collisions is usually between 1 and 4
150% depending on the weight of the nucleus (number of nucleons).  As the
151% result of the collisions fast nucleons and pions exit the nucleus.
152% This stage lasts usually $10^{-23}$ - $10^{-22}$ seconds.
153
154% After cascade comes pre-equilibrium and evaporation cometing with
155% fission stages.  At this stage more nucleons are ejected from the
156% nucleus.  This process is slower than the \emph{cascade} taking
157% $10^{-18}$-$10^{-16}$ seconds.
158
159% \subsection{Basic assumptions}
160% \index{cascadeassumptions}
161
162% The basic assumptions of INC-model can be summarized as follows:
163% \begin{enumerate}
164% \item Motion of particles obeys \emph{classical mechanics}.
165% \item In collisions relativistic kinematics is used.
166% \item Collisions between pairs of particles are well separated in
167%   space and time. This means that the spatial dimensions and time
168%   scale of collisions are smaller than those of particle
169%   transportation in the nuclear matter.
170% \end{enumerate}
171
172\subsection{Model principles}
173
174The INCL model uses only two external user defined parameters: the nuclear
175potential depth and scaling factor for time-step. All other parameters
176used during the calculation are obtained either from theory or
177experiments. In the actual simulation code good default values for
178these two parameters are predefined.
179
180During the initialization the necessary Woods-Saxon potential
181calculations are made. The results of these calculations are used at
182the beginning of a cascade to determine the positions and momenta of
183the nucleons inside the nucleus. The nucleons are modeled as free
184Fermi gas in a static potential well. The principle for doing this is
185presented in the following equations \ref{eqn:density} and
186\ref{eqn:rpcorrelations}.
187
188\index{nucleon density}
189The nucleon density in r-space is given by formula:
190\begin{equation}
191\rho(r) =  \left\{ \begin{array}{ll}
192  \frac{\rho_0}{1 + exp(\frac{r - R_0}{a})}& \textrm{for $r
193   < R_{max}$}\\
194 0 & \textrm{for $r > R_{max}$}\\
195  \end{array} \right.
196\label{eqn:density}
197\end{equation}
198The nucleon positions $r$ and momenta $p$ are correlated in the following way:
199\begin{equation}
200\rho(p)p^2dp = -\frac{d \rho(p)}{dr} \frac{r^3}{3}dr.
201\label{eqn:rpcorrelations}
202\end{equation}
203
204% \begin{figure}[ht]
205% \begin{center}
206% \includegraphics{rpcorrelations.eps}
207% \end{center}
208% \caption[Momentum-position correlations in INCL]{Nucleon
209%   momentum-position correlations of the initial state in INCL are
210%   determined using the Woods-Saxon potential. (Picture courtesy of
211%   Alain
212%   Boudard)}
213% \label{fig:rpcorr}
214% \end{figure}
215
216After the initialization a projectile particle, bullet, is shot
217towards the target nucleus. The impact parameter, i.e. the distance
218between the projectile particle and the center point of the projected
219nucleus surface is chosen at random. The value of the impact parameter
220determines the point where the bullet particle will hit the
221nucleus. After this the algorithm tracks the nucleons by determining
222the times at which an event will happen. The possible events are:
223\begin{itemize}
224\item collision
225\item decay of a delta resonance
226\item reflection from nuclear potential wall (only for nucleons)
227\end{itemize}
228
229The particles are assumed to propagate along straight line
230trajectories.  The algorithm calculates the time at which events will
231happen and propagates the particles directly to their positions at
232that particular point in time. Practically this means that the length
233of the time step in simulation is not constant.
234
235\index{participant}
236\index{spectator}
237All particles in the model are labeled either as \emph{participants}
238or \emph{spectators}. Only collisions where participants are involved
239are taken into account.
240
241\index{delta resonance}
242The processes undergone by the nucleons, pions and delta resonances
243are as follows:
244\begin{itemize}
245\item $NN \rightarrow N \Delta$ and $N \Delta \rightarrow NN$ 
246\item $\Delta \rightarrow \pi N$ and $\pi N \rightarrow \Delta$
247\end{itemize}
248%Figure \ref{img:inc} demonstrates these prosesses during INC.
249
250
251\subsection{Conservation laws}
252
253During cascade INCL model conserves several quantities:
254energy, baryon number, charge number, energy, momentum and angular momentum.
255The conservation relations are:
256\begin{eqnarray}
257A_{projectile} + A_{target} = A_{ejectiles} + A_{remnant} \\
258Z_{projectile} + Z_{target} = Z_{ejectiles} + Z_{remnant} \\
259T_{laboratory} = K_{ejectiles} + W_{\pi} + E_{recoil} + E_{excitation} + S \\  %///FIXED-AH systematically use full word indexing
260\vec{p}_{laboratory} = \vec{p}_{ejectiles} + \vec{p}_{\pi} +
261\vec{p}_{remnant} \\
262\vec{l} = \vec{l}_{ejectiles} + \vec{l}_{\pi} + \vec{l}_{remnant} +
263\vec{l}_{excitation},
264\end{eqnarray}
265where
266$A$ is baryon number, $Z$ charge, $T$ energy, $K$ kinetic energy,
267$E_{recoil}$ remnant recoil energy, $E_{excitation}$ remnant nucleus
268excitation energy, $S$ separation energy, $\vec{p}$ momentum and
269$\vec{l}$ angular momentum.
270
271\subsection{Cascade stopping time}
272
273Stopping time is defined as the point in time when the cascade phase is finished
274and the excited nucleus remnant is given to evaporation model.
275In INCL model the stopping time, $t_{stop}$,  is determined as:
276\begin{equation}
277t_{stop} = f_{stop}t_0 (A_{target}/208) ^{0.16}.
278\end{equation}
279Here $A_{target}$ is the target mass number and $t_0$ is a constant
280with default value 70 fm/c. Factor $f_{stop}$ is the second of
281the two free parameters in the model. It is a scaling factor for the
282stopping time. Good default value for this factor is
283$f_{stop}$ = 1.0.
284
285
286\subsection{Light ions}
287
288In addition to protons, neutrons and pions INCL4.2 supports also
289light ion projectiles: deuterons, tritons, He3 and alpha.
290In light of INCL physics modeling principles presented
291above, the extension to light ions is quite natural. Light ions are
292modeled in similar way to nucleus, except that ion potential is
293considered to be Gaussian instead of real Woods-Saxon shape. In table
294\ref{tbl:gaussianformslightions} the parameters for Gaussian forms
295used for distance and momentum distributions in light ions are
296presented.
297
298\begin{table}[h]
299\caption{The parameters for nucleon position and momentum
300  distributions in light ions.} % \cite{incl4}.}
301\begin{center}
302\begin{tabular}{c|c c}
303\hline
304Particle & $\sqrt{(r_{mean})^2}$ [fm] & $\sqrt{(p_{mean})^2}$ [MeV/c]\\
305\hline
306Deuteron & 1.91 & 77 \\
307Triton & 1.8 & 110 \\
308He3 & 1.8 & 110 \\
309Alpha & 1.63 & 153 \\
310\hline
311\end{tabular}
312\end{center}
313\label{tbl:gaussianformslightions}
314\end{table}
315
316
317\section{ABLA V3 evaporation}
318\index{evaporation}
319
320The ABLA V3 evaporation model takes excited nucleus parameters,
321excitation energy, mass number, charge number and nucleus spin, as
322input. It calculates the probabilities for emitting proton, neutron or
323alpha particle and also probability for fission to occur.
324The summary of Geant4 ABLA V3 implementation is represented in Table \ref{tbl:ablasummary}.
325
326
327The probabilities for emission of particle type $j$ are calculated using
328formula:
329\begin{equation}
330W_j(N,Z,E) = \frac{\Gamma_j(N,Z,E)}{\sum_k\Gamma_k(N,Z,E)},
331\label{eqn:probabilities}
332\end{equation}
333where $\Gamma_j$ is emission width for particle $j$, $N$ is neutron
334number, $Z$ charge number and $E$ excitation energy. Possible emitted
335particles are \emph{protons}, \emph{neutrons} and \emph{alphas}.
336Emission widths are calculated using the following formula:
337\index{emission width}
338\begin{equation}
339\Gamma_j = \frac{1}{2 \pi \rho_c(E)} \frac{4 m_j R^2}{\hbar^2} T_j^2 \rho_j(E - S_j - B_j),
340\label{eqn:emissionwidth}
341\end{equation}
342where $\rho_c(E)$ and $\rho_j(E - S_j - B_j)$ are the level densities
343of the compound nucleus and the exit channel, respectively. $B_j$ is
344the height of the Coulomb barrier, $S_j$ the separation energy, $R$ is
345the radius and $T_j$ the temperature of the remnant nucleus after
346emission and $m_j$ the mass of the emitted particle.
347
348The fission width is calculated from:
349\index{fission width}
350\begin{equation}
351\Gamma_i = \frac{1}{2 \pi \rho_c(E)}T_f \rho_f(E - B_f),
352\label{eqn:fissionwidth}
353\end{equation}
354where $\rho_f(E)$ is the level density of transition states in the
355fissioning nucleus, $B_f$ the height of the fission barrier and $T_f$
356the temperature of the nucleus.
357
358
359\begin{table}[ht]
360  \caption{ABLA V3 (located in the Geant4 directory
361    {\tt source/\-processes/\-hadronic/\-models/\-incl}) feature summary.}
362\label{tbl:ablasummary}
363\vskip1cm
364\begin{center}
365\begin{tabular}{l|l}
366\hline
367{\bf Requirements} & \\
368External data file & G4ABLA3.0 available at Geant4 site \\
369Environment variable & {\tt G4ABLADATA} \\ 
370for external data & \\
371\hline
372{\bf Usage}      & \\
373Physics list     & Not yet implemented, \\
374                 & instead use the interfaces directly. \\
375\hline
376{\bf Interfaces} &     \\
377{\tt G4InclAblaCascadeInterface} &  h--A \\
378{\tt G4InclAblaLightIonInterface} &  A--A \\
379\hline
380{\bf Supported input}     & Excited nuclei \\
381\hline
382{\bf Output particles}    & proton, neutron \\
383                    & $\alpha$ \\
384                    & fission products \\
385                    & residual nuclei \\
386\hline
387{\bf Features} & evaporation of proton, neutron and $\alpha$ \\
388                    & fission \\
389\hline
390{\bf Misc.}                & 5 classes, 5k lines \\
391                    & 0.9 $<$ speed C++/F77 $<$ 1.1 \\
392\hline
393{\bf References}    & Key reference: \cite{Junghans98a}, see also \cite{Benlliure98a} \\
394\hline
395\end{tabular}
396\end{center}
397\end{table}
398
399\subsection{Level densities}
400\index{level density}
401
402Nuclear level densities are calculated using the following formula:
403\begin{equation}
404  a = 0.073 A  [MeV^{-1}] + 0.095  B_s  A^{2/3} [MeV^{-2}],
405\label{eqn:leveldensity}
406\end{equation}
407where $A$ the nucleus mass number and $B_s$ dimensionless surface area
408of the nucleus.
409
410%The level density calculation is implemented in the
411%code as follows:
412%\begin{verbatim}
413%pa = (ald->av)*a + (ald->as)*pow(a,(2.0/3.0))
414%     + (ald->ak)*pow(a,(1.0/3.0));
415%\end{verbatim}
416%where {\tt ald->av} is 0.073, {\tt ald->as} is 0.095 and {\tt ald->ak}
417%is 0.
418
419\subsection{Fission}
420\index{fission}
421
422Fission barrier, used to calculate fission width
423\ref{eqn:fissionwidth}, is calculated using a semi-empirical model
424fitting to data obtained from nuclear physics experiments.
425
426
427\section{External data file required}
428
429Both INCL4.2 and ABLA V3 need data files. These files contain ABLA V3 shell corrections and remnant nucleus masses for INCL4.2.
430To enable this data set, environment variable {\tt G4ABLADATA} needs to be set,
431and the data downloaded from Geant4 web page. For Geant4 9.1 release use data file G4ABLA3.0
432
433\section{Implementation details}
434INCL4.2 and ABLA V3 are provided as alpha release for Geant4 9.1.
435In this first release design follows as closely as possibly the original codes,
436and class re-design is left for future Geant4 releases.
437Current simple design is shown in  \ref{fig:uml}
438
439\begin{figure}
440\begin{center}
441%\includegraphics[angle=0,scale=1.0]{InclAblaUml.eps}
442\includegraphics[angle=0,scale=1.0]{hadronic/theory_driven/Incl/InclAblaUml.eps}
443\end{center}
444\caption[INCL4 and ABLA class diagram]{Simplified UML class diagram of
445  INCL and ABLA implementations in Geant4.}
446\label{fig:uml}
447\end{figure}
448
449Testing of INCL and ABLA models is based on ROOT \cite{Brun97a} scripting.
450
451\section{Physics Performance}
452INCL4.2 together with ABLA V3 provides an up to date modeling tool particularly for spallation
453studies for hadron projectile energy range 200 MeV - 3 GeV.
454It provides an detailed description of double differential
455energy spectrum of cascading particles (see \ref{fig:pPbDoubleDifferential}) and remnants.
456
457Models are validated against recent data and continually updated.
458
459\begin{figure}
460\begin{center}
461%\includegraphics[angle=0,scale=0.65]{pPbDoubleDifferential.eps}
462\includegraphics[angle=0,scale=0.6]{hadronic/theory_driven/Incl/pPbDoubleDifferential.eps}
463\end{center}
464\caption{Geant4 implementation of INCL4.2 together with ABLA V3. Neutron double differential cross sections of reaction p(1GeV) + Pb
465 For more detailed discussion on this subject
466%  double differential cross sections for proton-induced reactions on
467%  Pb targets with comparison to experimental data
468see reference \cite{Boudard02a}.}
469\label{fig:pPbDoubleDifferential}
470\end{figure}
471
472\section{Status of this document}
473
474{\bf 06.12.2007} Documentation for alpha release added. Pekka
475Kaitaniemi, HIP (translation); Alain Boudard, CEA (contact person
476INCL/ABLA); Joseph Cugnon, University of Li\`ege (INCL physics
477modelling); Karl-Heintz Schmidt, GSI (ABLA); Christelle Schmidt, IPNL
478(fission code); Aatos Heikkinen, HIP (project coordination)
479
480% \begin{thebibliography}{99}
481% \bibitem{incl1} J. Cugnon et al \emph{Nuc. Phys. A352} (1981) 505
482% \bibitem{incl2} J. Cugnon et al \emph{Nuc. Phys. A462} (1987) 751
483% \bibitem{incl3} J. Cugnon et al \emph{Nuc. Phys. A500} (1989) 701
484% \bibitem{incl4} A. Boudard et al \emph{Phys. Rev. C66} (2002) 044615
485% \bibitem{liegeuniversity} Li\`ege University
486% \href{http://www.ulg.ac.be/foreign/}{{\tt http://www.ulg.ac.be/foreign/}}
487% \bibitem{cea} CEA website
488%   \href{http://www.cea.fr/gb/index.asp}{{\tt http://www.cea.fr/gb/index.asp}}
489% \end{thebibliography}
490
491\begin{latexonly}
492\begin{thebibliography}{99}
493
494% \bibitem{alsmiller90}
495%   R.G. Alsmiller and F.S. Alsmiller and O.W. Hermann,
496%   The high-energy transport code HETC88 and comparisons with experimental data,
497%   Nuclear Instruments and Methods in Physics Research A 295,
498%    (1990), 337--343,
499
500% [1] Barashenkov V.S., Toneev V.D. High Energy interactions of particles and nuclei with nuclei. Moscow, 1972
501%(in Russian, but there is an English translation))
502
503\bibitem{Boudard02a} A. Boudard et al \emph{Phys. Rev. C66} (2002) 044615
504\bibitem{Cugnon81a} J. Cugnon et al \emph{Nuc. Phys. A352} (1981) 505
505\bibitem{Cugnon87a} J. Cugnon et al \emph{Nuc. Phys. A462} (1987) 751
506\bibitem{Cugnon89a} J. Cugnon et al \emph{Nuc. Phys. A500} (1989) 701
507\bibitem{Cugnon97a} J. Cugnon et al \emph{Nuc. Phys. A620} (1997) 745
508\bibitem{Junghans98a} A.R. Junghans et al \emph{Nuc. Phys. A629} (1998) 635
509\bibitem{Benlliure98a} J. Benlliure et al \emph{Nuc. Phys. A628} (1998) 458
510\bibitem{Kaitaniemi07a} P. Kaitaniemi et al. \emph{Implementation of
511    INCL4 cascade and ABLA evaporation codes in Geant4} (To be
512    published in the proceedings of CHEP 2007, September 2-6,
513    Victoria, BC, Canada.)
514\bibitem{Brun97a} R. Brun, F. Rademakers \emph{Nucl. Inst \&
515    Meth. in Phys. Res. A 389} (1997) 81
516
517\end{thebibliography}
518\end{latexonly}
519
520
521
522\begin{htmlonly}
523\section{Bibliography}
524
525\begin{enumerate}
526\item{Boudard02a} A. Boudard et al \emph{Phys. Rev. C66} (2002) 044615
527\item{Cugnon81a} J. Cugnon et al \emph{Nuc. Phys. A352} (1981) 505
528\item{Cugnon87a} J. Cugnon et al \emph{Nuc. Phys. A462} (1987) 751
529\item{Cugnon89a} J. Cugnon et al \emph{Nuc. Phys. A500} (1989) 701
530\item{Cugnon97a} J. Cugnon et al \emph{Nuc. Phys. A620} (1997) 745
531\item{Junghans98a} A.R. Junghans et al \emph{Nuc. Phys. A629} (1998) 635
532\item{Benlliure98a} J. Benlliure et al \emph{Nuc. Phys. A628} (1998) 458
533\item{Kaitaniemi07a} P. Kaitaniemi et al. \emph{Implementation of
534    INCL4 cascade and ABLA evaporation codes in Geant4} (To be
535    published in the proceedings of CHEP 2007, September 2-6,
536    Victoria, BC, Canada.)
537\item{Brun97a} R. Brun, F. Rademakers \emph{Nucl. Inst \&
538    Meth. in Phys. Res. A 389} (1997) 81
539
540\end{enumerate}
541\end{htmlonly}
542
Note: See TracBrowser for help on using the repository browser.