source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/hadronic/theory_driven/Multifragmentation/MultFragSim.tex @ 1344

Last change on this file since 1344 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 10.3 KB
Line 
1\section{Multifragmentation process simulation.}
2\hspace{1.0em} The GEANT4 multifragmentation model is capable to predict
3final states as result of an highly excited nucleus statistical break-up.
4
5The initial information for calculation of
6multifragmentation stage consists from the atomic mass number $A$,
7charge $Z$ of excited nucleus and its excitation
8energy $U$.  At high excitation energies $U/A > 3$ \ MeV the
9multifragmentation mechanism, when nuclear system can eventually breaks
10down into fragments, becomes the dominant. Later on the excited primary
11fragments propagate independently in the mutual Coulomb field and
12undergo de-excitation.  Detailed description of multifragmentation
13mechanism and model can be found in review \cite{BBIMS95}.
14
15\subsection{Multifragmentation probability.}
16
17\hspace{1.0em}The probability of a breakup channel $b$ is given by the
18expression (in the so-called microcanonical approach \cite{BBIMS95},
19\cite{Botvina87}):
20\begin{equation}
21\label{MFS1}W_b(U,A,Z)=\frac{1}{\sum_{b}\exp [S_b(U,A,Z)]} \exp [S_b(U,A,Z)],
22\end{equation}
23where $S_b(U,A,Z)$ is the entropy of a multifragment state corresponding
24to the breakup channel $b$. The channels $\{b\}$ can be parametrized by
25set of fragment multiplicities $N_{A_f,Z_f}$ for fragment with atomic
26number $A_f$ and charge $Z_f$. All partitions $\{b\}$ should satisfy
27constraints on the total mass and charge:
28\begin{equation}
29\label{MFS2}\sum_{f}N_{A_f,Z_f}A_f = A
30\end{equation}
31and
32\begin{equation}
33\label{MFS3}\sum_{f}N_{A_f,Z_f}Z_f = Z.
34\end{equation}
35It is assumed \cite{Botvina87} that thermodynamic equilibrium is
36established in every channel, which can be characterized by the channel
37temperature $T_b$.
38
39The channel temperature $T_b$ is determined by the equation constraining
40the average energy $E_b(T_b, V)$ associated with partition $b$:
41\begin{equation}
42\label{MFS4}E_b(T_b, V)= U+E_{ground} = U+M(A,Z),
43\end{equation}
44where $V$ is the system volume, $E_{ground}$ is the ground state (at
45$T_b = 0$) energy of system and $M(A,Z)$ is the mass of nucleus.
46
47According to the conventional thermodynamical formulae the average energy
48of a partitition $b$ is expressed through the system free energy $F_b$
49as follows
50\begin{equation}
51\label{MFS5}E_b(T_b, V)= F_b(T_b,V) +T_bS_b(T_b,V).
52\end{equation} 
53Thus, if free energy $F_b$ of a partition $b$ is known, we can find
54the channel temperature $T_b$ from Eqs. ($\ref{MFS4}$) and ($\ref{MFS5}$),
55then the entropy $S_b = -dF_b/dT_b$ and hence, decay probability $W_b$
56defined by Eq. ($\ref{MFS1}$) can be calculated.
57
58Calculation of the free energy is based on the use of the liquid-drop
59description of individual fragments \cite{Botvina87}.  The free energy
60of a partition $b$ can be splitted into several terms:
61\begin{equation}
62\label{MFS6}F_b(T_b,V) =  \sum_{f}F_f(T_b,V) + E_{C}(V),
63\end{equation}
64where $F_f(T_b,V)$ is the average energy of an individual fragment
65including the volume
66\begin{equation} 
67\label{MFS7} F^V_f = [-E_0 - T^2_b/\epsilon(A_f)]A_f,
68\end{equation}
69surface
70\begin{equation}
71\label{MFS8}F^{Sur}_f = \beta_0[(T_c^2 - T^2_b)/(T_c^2 + T^2_b)]^{5/4}A_f^{2/3}
72= \beta(T_b)A_f^{2/3},
73\end{equation}
74symmetry
75\begin{equation}
76\label{MFS9}F^{Sim}_f = \gamma(A_f - 2Z_f)^2/A_f,
77\end{equation}
78Coulomb
79\begin{equation}
80\label{MFS10}F^{C}_f = \frac{3}{5}\frac{Z_f^2e^2}{r_0A_f^{1/3}}
81[1 - (1+ \kappa_{C})^{-1/3}]
82\end{equation}
83and translational
84\begin{equation}
85\label{MFS11}F^{t}_f = -T_b\ln{(g_fV_f/\lambda^3_{T_b})} +
86T_b\ln{(N_{A_f,Z_f}!)}/ N_{A_f,Z_f}
87\end{equation}
88terms  and the last term
89\begin{equation}
90\label{MFS12} E_{C}(V)=\frac{3}{5}\frac{Z^2e^2}{R} 
91\end{equation} 
92is the Coulomb energy of the uniformly charged sphere with charge $Ze$
93and the radius $R = (3V/4\pi)^{1/3}= r_0A^{1/3}(1 + \kappa_{C})^{1/3}$,
94where $\kappa_{C} = 2$ \cite{Botvina87}.
95
96Parameters $E_0 = 16$ \ MeV, $\beta_0 = 18$\ MeV, $\gamma = 25$ \ MeV
97are the coefficients of the Bethe-Weizsacker mass formula at $T_b = 0$.
98$g_f=(2S_f+1)(2I_f+1)$ is a spin $S_f$ and isospin $I_f$ degeneracy
99factor for fragment ( fragments with $A_f > 1$ are treated as the
100Boltzmann particles), $\lambda_{T_b} = (2\pi h^2/m_N T_b)^{1/2}$ is the
101thermal wavelength, $m_N$ is the nucleon mass, $r_0 = 1.17$ \ fm,
102$T_c=18$ \ MeV is the critical temperature, which corresponds to the
103liquid-gas phase transition. $\epsilon(A_f) = \epsilon_0[1 + 3/(A_f-1)]$
104is the inverse level density of the mass $A_f$ fragment and
105$\epsilon_0=16$ \ MeV is considered as a variable model parameter, whose
106value depends on the fraction of energy transferred to the internal
107degrees of freedom of fragments \cite{Botvina87}. The free volume $V_f
108=\kappa V=\kappa\frac{4}{3}\pi r_0^4 A$ available to the translational
109motion of fragment, where $\kappa \approx 1$ and its dependence on the
110multiplicity of fragments was taken from \cite{Botvina87}:
111\begin{equation}
112\label{MFS13}\kappa =[1 + \frac{1.44}{r_0A^{1/3}}(M^{1/3} - 1)]^{3} - 1.
113\end{equation}
114For $M = 1$ $\kappa = 0$.
115
116The light fragments with $A_f < 4$, which have no excited
117states, are considered as elementary particles characterized by the
118empirical masses $M_f$, radii $R_f$, binding energies $B_f$, spin
119degeneracy factors $g_f$ of ground states.  They contribute to the
120translation free energy and Coulomb energy.
121
122
123\subsection[Direct simulation of low multiplicity disintegration]{Direct simulation of the low multiplicity multifragment disintegration} 
124
125\hspace{1.0em}At comparatively low excitation energy (temperature)
126system will disintegrate into a small number of fragments $M \leq 4$ and
127number of channel is not huge. For such situation a direct
128(microcanonical) sorting of all decay channels can be performed. Then,
129using Eq. ($\ref{MFS1}$), the average multiplicity value $<M>$ can be
130found.  To check that we really have the situation with the low
131excitation energy, the obtained value of $<M>$ is examined to obey the
132inequality $<M> \leq M_0$, where $M_0 = 3.3$ and $M_0 = 2.6$ for $A \sim
133100$ and for $A \sim 200$, respectively \cite{Botvina87}.  If the
134discussed inequality is fulfilled, then the set of channels under
135consideration is belived to be able for a correct description of the
136break up. Then using calculated according Eq. ($\ref{MFS1}$)
137probabilities we can randomly select a specific channel with given
138values of $A_f$ and $Z_f$.
139 
140
141\subsection{ Fragment multiplicity distribution.}
142
143\hspace{1.0em}The individual fragment multiplicities $N_{A_f,Z_f}$ in
144the so-called macrocanonical ensemble \cite{BBIMS95} are distributed
145according to the Poisson distribution:
146\begin{equation}
147\label{MFS14} P(N_{A_f,Z_f}) = \exp{(-\omega_{A_f,Z_f})}
148\frac{\omega_{A_f,Z_f}^{N_{A_f,Z_f}}}{N_{A_f,Z_f}!}
149\end{equation}
150with mean value $<N_{A_f,Z_f}>=\omega_{A_f,Z_f}$ defined as
151\begin{equation}
152\label{MFS15} <N_{A_f,Z_f}> =g_fA_f^{3/2}\frac{V_f}{\lambda^3_{T_b}}
153\exp{[\frac{1}{T_b}(F_f(T_b,V)-F^{t}_f(T_b,V) - \mu A_f - \nu Z_f)]},
154\end{equation}
155where $\mu$ and $\nu$ are chemical potentials. The chemical potential
156are found by substituting Eq. ($\ref{MFS15}$) into the system of
157constraints:
158\begin{equation}
159\label{MFS16}\sum_{f}<N_{A_f,Z_f}>A_f = A
160\end{equation}
161and
162\begin{equation}
163\label{MFS17}\sum_{f}<N_{A_f,Z_f}>Z_f = Z
164\end{equation}
165and solving it by iteration.
166 
167 
168\subsection{ Atomic number distribution of fragments.}
169
170\hspace{1.0em}Fragment atomic numbers $A_f > 1$ are also distributed
171according to the Poisson distribution \cite{BBIMS95} (see
172Eq. ($\ref{MFS14}$)) with mean value $<N_{A_f}>$ defined as
173\begin{equation}
174\label{MFS18} <N_{A_f}> = A_f^{3/2}\frac{V_f}{\lambda^3_{T_b}}
175\exp{[\frac{1}{T_b}(F_f(T_b,V)-F^{t}_f(T_f,V) - \mu A_f - \nu <Z_f>)]},
176\end{equation}
177where calculating  the  internal free energy 
178$F_f(T_b,V)-F^{t}_f(T_b,V)$  one has to substitute $Z_f
179\rightarrow <Z_f>$. The average  charge $<Z_f>$ for fragment having atomic
180number $A_f$ is given by
181\begin{equation}
182\label{MFS19}<Z_f(A_f)> = \frac{(4\gamma + \nu)A_f}{8\gamma + 2[1 - (1 +
183\kappa)^{-1/3}]A_f^{2/3}}.
184\end{equation}
185
186\subsection{ Charge distribution of fragments.}
187
188\hspace{1.0em}At given mass of fragment $A_f > 1$ the charge $Z_f$
189distribution of fragments are described by Gaussian
190\begin{equation}
191\label{MFS20} P(Z_f(A_f))\sim \exp{[-\frac{(Z_f(A_f) -
192<Z_f(A_f)>)^2}{2(\sigma_{Z_f}(A_f))^2}]}
193\end{equation} 
194with dispertion
195\begin{equation}
196\label{MFS21}\sigma_{Z_f(A_f)} = \sqrt{\frac{A_fT_b}
197{8 \gamma + 2[1 - (1 +\kappa)^{-1/3}]A_f^{2/3}}} 
198\approx \sqrt{\frac{A_fT_b}{8 \gamma}}.
199\end{equation} 
200and the average charge $<Z_f(A_f)>$ defined by Eq. ($\ref{MFS17}$).
201
202\subsection{ Kinetic energy distribution of fragments.}
203
204\hspace{1.0em}It is assumed \cite{Botvina87} that at the instant of the
205nucleus break-up the kinetic energy of the fragment $T^{f}_{kin}$ in the
206rest of nucleus obeys the Boltzmann distribution at given temperature
207$T_b$:
208\begin{equation}
209\label{MFS22} \frac{dP(T^{f}_{kin})}{dT^{f}_{kin}}\sim \sqrt{T^{f}_{kin}}
210\exp{(-T^{f}_{kin}/T_b)}.
211\end{equation}
212Under assumption of thermodynamic equilibrium the fragment have
213isotropic velocities distribution in the rest frame of nucleus. The
214total kinetic energy of fragments should be equal $\frac{3}{2}MT_b$,
215where $M$ is fragment multiplicity, and the total fragment momentum
216should be equal zero. These conditions are fullfilled by choosing
217properly the momenta of two last fragments.
218
219The initial conditions for the divergence of the fragment system are
220determined by random selection of fragment coordinates distributed with
221equal probabilities over the break-up volume $V_f = \kappa V$. It can be
222a sphere or prolongated ellipsoid. Then Newton's equations of motion are
223solved for all fragments in the self-consistent time-dependent Coulomb
224field \cite{Botvina87}.  Thus the asymptotic energies of fragments
225determined as result of this procedure differ from the initial values by
226the Coulomb repulsion energy.
227
228\subsection{Calculation of the fragment excitation energies.} 
229
230\hspace{1.0em}The temparature $T_b$ determines the average excitation
231energy of each fragment:
232\begin{equation}
233\label{MFS23} U_{f}(T_b) = E_f(T_b) - E_f(0) =  \frac{T_b^2}{\epsilon_0}A_f +
234[\beta(T_b) - T_b \frac{d\beta(T_b)}{dT_b} - \beta_0]A^{2/3}_f, 
235\end{equation} 
236where $E_f(T_b)$ is the average fragment energy at given temperature
237$T_b$ and $\beta(T_b)$ is defined in Eq. ($\ref{MFS8}$).  There is no
238excitation for fragment with $A_f < 4$, for $^{4}He$ excitation energy
239was taken as $U_{^{4}He} = 4T^2_b/\epsilon_o$.
240
Note: See TracBrowser for help on using the repository browser.