source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/hadronic/theory_driven/PartonString/LongitudinalStringDecay.tex @ 1211

Last change on this file since 1211 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 4.5 KB
Line 
1\section{Longitudinal string decay.}
2
3\subsection{Hadron production by string fragmentation.}
4\hspace{1.0em}A string is stretched between flying away constituents:
5quark and antiquark or quark and diquark or diquark and antidiquark or
6antiquark and antidiquark.  From knowledge of the constituents
7longitudinal $p_{3i}=p_{zi}$ and transversal $p_{1i}=p_{xi}$,
8$p_{2i}=p_{yi}$ momenta as well as their energies $p_{0i} = E_{i}$,
9where $i=1,2$, we can calculate string mass squared:
10\begin{equation}
11\label{LSD1} M^2_S=p^{\mu}p_{\mu}=p^2_0-p^2_1-p^2_2-p^2_3,
12\end{equation}
13where $p_{\mu} = p_{\mu 1}+p_{\mu 2}$ is the string four momentum and
14 $\mu = 0,1,2,3$.
15 
16The fragmentation of a string follows an iterative scheme:
17\begin{equation}
18string \Rightarrow hadron + new \ string,
19\end{equation}
20\textit{i. e.} a quark-antiquark (or diquark-antidiquark) pair is
21created and placed between leading quark-antiquark (or diquark-quark or
22diquark-antidiquark or antiquark-antidiquark) pair.
23
24The values of the strangeness suppression and diquark suppression
25factors are
26\begin{equation}
27\label{LSD2} u:d:s:qq = 1:1:0.35:0.1.
28\end{equation}
29
30A hadron is formed randomly on one of the end-points of the string. The
31quark content of the hadrons determines its species and charge.  In the
32chosen fragmentation scheme we can produce not only the groundstates of
33baryons and mesons, but also their lowest excited states.  If for baryons the
34quark-content does not determine whether the state belongs to the lowest
35octet or to the lowest decuplet, then octet or decuplet are choosen with
36equal probabilities.
37 In the case
38of mesons the multiplet must also be determined before a type of hadron
39can be assigned. The probability of choosing a certain multiplet depends
40on the spin of the multiplet.
41
42 The zero transverse
43momentum of created quark-antiquark (or diquark-antidiquark) pair is
44defined by the sum of an equal and opposite directed transverse momenta
45of quark and antiquark.
46
47The transverse momentum of created quark is randomly sampled according
48to probability ($\ref{LSE4}$)
49with the parameter $a = 0.25$ GeV$^{-2}$. Then a hadron transverse momentum
50${\bf p_t}$ is determined by the sum of the transverse momenta of its
51constituents.
52
53The fragmentation function $f^h(z,p_t)$ represents the probability
54distribution for hadrons with the transverse momenta $\bf{p_t}$ to
55aquire the light cone momentum fraction
56$z=z^{\pm}=(E^h \pm p^h_z/(E^q \pm p^q_z)$, where $E^h$ and $E^q$ are
57the hadron and fragmented quark energies, respectively
58and $p^h_z$ and $p^q_z$ are hadron and fragmented quark longitudinal momenta,
59respectively,
60and $z^{\pm}_{min} \leq z^{\pm} \leq z^{\pm}_{max}$, from the
61fragmenting string. The values of $z^{\pm}_{min,max}$ are determined by
62hadron $m_h$ and constituent transverse masses and the available string
63mass. One of the most common fragmentation function is  used in
64the LUND model \cite{LUND83}:
65\begin{equation}
66\label{LSD5} f^h (z, p_t) \sim \frac{1}{z}(1-z)^a
67\exp{[-\frac{b(m_h^2+p_t^2)}{z}]}.
68\end{equation}
69One can use this fragmentation function for the decay of the excited
70string.
71
72One can use also the fragmentation functions are derived in \cite{Kai87}:
73\begin{equation}
74\label{LSD6} f^{h}_q (z, p_t)=[1+\alpha^h_q(<p_t>)] (1-z)^{\alpha^h_q(<p_t>)}.
75\end{equation}
76The advantage of these functions as compared to the LUND fragmentation
77function is that they have correct three--reggeon behaviour at
78$z\rightarrow 1$ \cite{Kai87}.
79
80\subsection{The hadron formation time and coordinate.}
81
82\hspace{1.0em}To calculate produced hadron formation times and longitudinal
83coordinates we consider the $(1+1)$-string  with mass $M_S$ and string
84tension $\kappa$, which decays into hadrons at string rest frame.  The
85$i$-th produced hadron has energy $E_i$ and its longitudinal momentum
86$p_{zi}$, respectively. Introducing light cone variables $p^{\pm}_{i}=
87E_{i} \pm p_{iz}$ and numbering string breaking points consecutively
88from right to left we obtain $p^{+}_{0} = M_{S}$, $p_{i}^{+}=\kappa
89(z^{+}_{i-1}-z_i^{+})$ and $p_{i}^{-} = \kappa x^{-}_i$.
90
91We can identify the hadron formation point coordinate and time as the
92point in space-time, where the quark lines of the quark-antiquark pair
93forming the hadron meet for the first time (the so-called 'yo-yo'
94formation point \cite{LUND83}):
95\begin{equation}
96\label{LSD7}t_i = \frac{1}{2\kappa}[M_S - 2 \sum_{j=1}^{i-1}p_{zj} + E_i -
97p_{zi}]
98\end{equation}
99and coordinate
100\begin{equation}
101\label{LSD8}
102z_i = \frac{1}{2\kappa}[M_S - 2 \sum_{j=1}^{i-1}E_{j} + p_{zi}- E_i].
103\end{equation}
Note: See TracBrowser for help on using the repository browser.