source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/hadronic/theory_driven/PartonString/LongitudinalStringExcitation.tex

Last change on this file was 1211, checked in by garnier, 15 years ago

CVS update

File size: 6.1 KB
Line 
1\section{Longitudinal string excitation}
2
3\subsection{Hadron--nucleon inelastic collision}
4
5\hspace{1.0em}Let us consider collision of two hadrons with their c. m. momenta
6$P_1 = \{E^{+}_1,m^2_1/E^{+}_1,{\bf 0}\}$ and $P_2 =
7\{E^{-}_2,m^2_2/E^{-}_2,{\bf 0}\}$, where the light-cone variables
8$E^{\pm}_{1,2} = E_{1,2} \pm P_{z1,2}$ are defined through hadron
9energies $E_{1,2}=\sqrt{m^2_{1,2} + P^2_{z1,2}}$, hadron longitudinal
10momenta $P_{z1,2}$ and hadron masses $m_{1,2}$, respectively. Two
11hadrons collide by two partons with momenta $p_1 = \{x^{+}E^{+}_1,0,{\bf
120}\}$ and $p_2 = \{0, x^{-}E^{-}_2,{\bf 0}\}$, respectively.
13
14\subsection{The diffractive string excitation} 
15
16In the diffractive string excitation (the Fritiof approach \cite{FRITIOF87})
17 only momentum can be transferred:
18\begin{equation}
19\label{LSE1}
20\begin{array}{cc}
21P^{\prime}_1 = P_1 + q\\
22P^{\prime}_2 = P_2 -q,
23\end{array}
24\end{equation}
25where
26\begin{equation}
27\label{LSE2}q=\{-q^2_t/(x^{-}E^{-}_2),q^2_t/(x^{+}E^{+}_1),\bf q_t \}
28\end{equation}
29 is parton
30momentum transferred and ${\bf q_t}$ is its transverse component.
31We use the Fritiof approach to simulate the diffractive excitation of
32particles.
33 
34\subsection{The string excitation by parton exchange}
35
36\hspace{1.0em}For this case the parton exchange (rearrangement) and
37the momentum exchange are allowed \cite{QGSM82},\cite{DPM94},\cite{Am86}:
38\begin{equation}
39\label{LSE3}
40\begin{array}{cc}
41P^{\prime}_1 = P_1 - p_1 + p_2 + q \\
42P^{\prime}_2 = P_2 + p_1 - p_2 - q,
43\end{array}
44\end{equation}
45where $q= \{0,0, {\bf q_t}\}$ is parton momentum transferred, i. e. only
46its transverse components ${\bf q_t} = 0$ is taken into account.
47
48\subsection{Transverse momentum sampling}
49
50\hspace{1.0em}The transverse component of the parton momentum
51transferred is generated according to probability
52\begin{equation}
53\label{LSE4}P({\bf q_t})d{\bf q_t} =
54\sqrt{\frac{a}{\pi}} \exp{(-aq^2_t)}d{\bf q_t},
55\end{equation}
56where  parameter $a = 0.6$ GeV$^{-2}$.
57
58\subsection{Sampling x-plus and x-minus}
59
60Light cone parton quantities $x^{+}$ and $x^{-}$ are generated
61independently and according to distribution:
62\begin{equation}
63\label{LSE5} u(x) \sim x^{\alpha}(1 - x)^{\beta},
64\end{equation}
65where $x=x^{+}$ or $x=x^{-}$.
66Parameters $\alpha =-1$ and $\beta = 0$ are chosen for the FRITIOF approach
67\cite{FRITIOF87}. In the case of the QGSM approach \cite{Am86} $\alpha = -0.5$ 
68and $\beta = 1.5$ or $\beta = 2.5$.  Masses of the excited strings
69should satisfy the kinematical constraints:
70\begin{equation}
71\label{LSE6} P^{\prime +}_1 P^{\prime -}_1 \geq m^2_{h1} + q^2_t
72\end{equation}
73and
74\begin{equation}
75\label{LSE7} P^{\prime +}_2 P^{\prime -}_2 \geq m^2_{h2} + q^2_t,
76\end{equation}
77where hadronic masses $m_{h1}$ and $m_{h2}$ (model parameters) are
78defined by string quark contents.  Thus, the random selection of the
79values $x^{+}$ and $x^{-}$ is limited by above constraints.
80
81\subsection{The diffractive string excitation} 
82
83\hspace{1.0em}In the diffractive string excitation (the
84FRITIOF approach \cite{FRITIOF87}) for each
85inelastic hadron--nucleon collision we have to select
86randomly the transverse momentum transferred ${\bf q_t}$ (in accordance
87with the probability given by Eq. ($\ref{LSE4}$)) and select randomly
88the values of $x^{\pm}$ (in accordance with distribution defined by
89Eq. ($\ref{LSE5}$)). Then we have to calculate the parton momentum
90transferred $q$ using Eq. ($\ref{LSE2}$) and update scattered hadron
91and nucleon or scatterred nucleon and nucleon momenta using
92Eq. ($\ref{LSE3}$). For each collision we have to check the constraints
93($\ref{LSE6}$) and ($\ref{LSE7}$), which can be written more
94explicitly:
95\begin{equation}
96\label{LSE8} [E_1^{+} -\frac{q^2_t}{x^{-}E^{-}_2}][\frac{m_1^2}{E^{+}_1} +
97\frac{q^2_t}{x^{+}E^{+}_1}]\geq m^2_{h1} + q^2_t
98\end{equation}
99and
100\begin{equation}
101\label{LSE9} [E_2^{-} +\frac{q^2_t}{x^{-}E^{-}_2}][\frac{m_2^2}{E^{-}_2} -
102\frac{q^2_t}{x^{+}E^{+}_1}]\geq m^2_{h1} + q^2_t.
103\end{equation}
104
105\subsection{The string excitation by parton rearrangement} 
106
107\hspace{1.0em}In this approach \cite{Am86} strings (as result of parton
108rearrangement) should be spanned not only between valence quarks of
109colliding hadrons, but also between valence and sea quarks and between
110sea quarks.  The each participant hadron or nucleon should be splitted
111into set of partons: valence quark and antiquark for meson or valence
112quark (antiquark) and diquark (antidiquark) for baryon (antibaryon) and
113additionaly the $(n-1)$ sea quark-antiquark pairs (their flavours are
114selected according to probability ratios $ u:d:s = 1:1:0.35$), if hadron
115or nucleon is participating in the $n$ inelastic collisions.  Thus for
116each participant hadron or nucleon we have to generate a set of light
117cone variables $x_{2n}$, where $x_{2n}=x^{+}_{2n}$ or
118$x_{2n}=x^{-}_{2n}$ according to distribution:
119\begin{equation}
120\label{LS10} f^{h}(x_1,x_2,...,x_{2n})=f_{0}\prod_{i=1}^{2n}u^h_{q_i}(x_i)
121\delta{(1-\sum_{i=1}^{2n}x_i)},
122\end{equation}
123where $f_0$ is the normalization constant.
124Here, the quark structure functions $u_{q_i}^h(x_i)$ for valence quark
125(antiquark) $q_v$,
126sea quark and antiquark $q_s$ and valence diquark (antidiquark) $qq$ are:
127\begin{equation}
128\label{LS11}
129u^h_{q_v}(x_v)=x_v^{\alpha_v},\ u^h_{q_s}(x_s)=x_s^{\alpha_s},\ u^h_{qq}(x_{qq})
130=x_{qq}^{\beta_{qq}},
131\end{equation}
132where $\alpha_v = -0.5$ and $\alpha_s = -0.5$ \cite{QGSM82} 
133 for the non-strange quarks (antiquarks) and $\alpha_v =
1340$ and $\alpha_s = 0$ for strange quarks (antiquarks), $\beta_{uu} =
1351.5$ and $\beta_{ud} = 2.5$ for proton (antiproton) and $\beta_{dd} =
1361.5$ and $\beta_{ud} = 2.5$ for neutron (antineutron).  Usualy $x_i$ are
137selected between $x^{min}_i \leq x_i \leq 1$, where model parameter
138$x^{min}$ is a function of initial energy, to prevent from production of
139strings with low masses (less than hadron masses), when whole selection
140procedure should be repeated.  Then the transverse momenta of partons
141${\bf q_{it}}$ are generated according to the Gaussian probability
142Eq. ($\ref{LSE4}$) with $a = 1/4\Lambda(s)$ and under the constraint: $\sum_{i=1}^{2n}{\bf
143q_{it}}=0$. The partons are considered as the off-shell partons,
144i. e. $m^2_i \neq 0$.
Note: See TracBrowser for help on using the repository browser.