source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/hadronic/theory_driven/PartonString/ReactionInitialStatePSM.tex @ 1345

Last change on this file since 1345 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 3.9 KB
Line 
1\section{Reaction initial state simulation.}
2
3\subsection[Allowed projectiles and bombarding energy range]{Allowed projectiles and bombarding energy range for interaction with nucleon and nuclear targets}
4\hspace{1.0em}
5The GEANT4 parton string models are capable to predict final states (produced
6hadrons
7which belong to the scalar and vector meson nonets and the baryon (antibaryon)
8octet and decuplet) of reactions on nucleon and nuclear targets
9with nucleon, pion and kaon
10 projectiles. The allowed bombarding energy
11 $\sqrt{s} > 5$ \ GeV is recommended.
12 Two approaches, based on diffractive excitation or soft scattering with
13 diffractive admixture according to cross-section, are considered.
14\hspace{1.0em}Hadron-nucleus  collisions in the both
15approaches (diffractive and parton exchange) are considered
16as a set of the independent hadron-nucleon collisions.
17 However, the string excitation procedures
18in these approaches are rather different.
19
20\subsection{ MC initialization procedure for nucleus.}
21\hspace{1.0em}The initialization of each nucleus, consisting from $A$
22nucleons and $Z$ protons with coordinates $\mathbf{r}_i$ and momenta
23$\mathbf{p}_i$, where $i = 1,2,...,A$ is performed.
24We use the standard initialization Monte Carlo procedure, which
25is realized in the most of the high energy nuclear interaction models:
26\begin{itemize}
27\item Nucleon radii $r_i$ are selected randomly in the rest of nucleus according
28to proton or neutron density $\rho(r_i)$.
29For heavy nuclei with $A > 16$ \cite{GLMP91} nucleon density is
30\begin{equation}
31\label{NIS1}\rho(r_i) =
32 \frac{\rho_0}{1 + \exp{[(r_i - R)/a]}}
33\end{equation}
34where
35\begin{equation}
36\label{NIS2}\rho_0 \approx \frac{3}{4\pi R^3}(1+\frac{a^2\pi^2}{R^2})^{-1}.
37\end{equation} 
38Here $R=r_0 A^{1/3}$ \ fm and $r_0=1.16(1-1.16A^{-2/3})$ \ fm and $a
39\approx 0.545$ fm.  For light nuclei with $A < 17$ nucleon density is
40given by a harmonic oscillator shell model \cite{Elton61}, e. g.
41\begin{equation}
42\label{4aap6} \rho(r_i) = (\pi R^2)^{-3/2}\exp{(-r_i^2/R^2)},
43\end{equation}
44where $R^2 = 2/3<r^2> = 0.8133 A^{2/3}$ \ fm$^2$.
45 To take into account nucleon
46repulsive core it is assumed that internucleon distance $d > 0.8$ \ fm;
47
48\item The initial momenta of the nucleons are randomly choosen between $0$ and
49$p^{max}_F$, where
50the maximal momenta of nucleons (in the local Thomas-Fermi
51approximation \cite{DF74}) depends from
52the proton or neutron density $\rho$ according to
53\begin{equation}
54\label{NIS5} p^{max}_F = \hbar c(3\pi^2 \rho)^{1/3}
55\end{equation}
56with $\hbar c = 0.197327$ GeV fm;
57
58\item To obtain coordinate and momentum components, it
59 is assumed that nucleons are distributed isotropicaly in configuration
60 and momentum spaces;
61
62\item Then perform shifts of nucleon coordinates ${\bf r_j^{\prime}}
63= {\bf r_j} - 1/A \sum_i {\bf r_i}$ and momenta ${\bf p_j^{\prime}}
64= {\bf p_j} - 1/A \sum_i {\bf p_i}$ 
65of nucleon momenta. The nucleus must be centered in configuration space around
66$\mathbf{0}$, \textit{i. e.} $\sum_i {\mathbf{r}_i} = \mathbf{0}$ and
67 the nucleus must be at rest, i. e. $\sum_i {\bf p_i} = \bf 0$;
68
69\item We compute energy per nucleon $e = E/A = m_{N} + B(A,Z)/A$,
70where $m_N$ is nucleon mass and the nucleus binding energy $B(A,Z)$ is given 
71by the Bethe-Weizs\"acker formula\cite{BM69}:
72\begin{equation}
73\begin{array}{c}
74\label{NIS6} B(A,Z) = \\
75= -0.01587A + 0.01834A^{2/3} + 0.09286(Z- \frac{A}{2})^2 +
760.00071 Z^2/A^{1/3},
77\end{array}
78\end{equation} 
79 and find the effective mass of each nucleon $m^{eff}_i = 
80\sqrt{(E/A)^2 - p^{2\prime}_i}$.
81\end{itemize}
82
83\subsection{Random choice of the impact parameter.}
84
85\hspace{1.0em}The impact parameter $0 \leq b \leq R_t$ is randomly
86selected according to the probability:
87\begin{equation}
88\label{NIS11}P({\bf b})d{\bf b} = b d{\bf b},
89\end{equation}
90where  $R_t$ is the target  radius,
91respectively. In the case of nuclear projectile or target the nuclear radius is
92determined from condition:
93\begin{equation}
94\label{NIS12}\frac{\rho(R)}{\rho(0)} = 0.01.
95\end{equation}
Note: See TracBrowser for help on using the repository browser.