\section{Sample of collision participants in nuclear collisions.} \subsection{MC procedure to define collision participants.} \hspace{1.0em} The inelastic hadron--nucleus interactions at ultra--relativistic energies are considered as independent hadron--nucleon collisions. It was shown long time ago \cite{CK78} for the hadron--nucleus collision that such a picture can be obtained starting from the Regge--Gribov approach \cite{BT76}, when one assumes that the hadron-nucleus elastic scattering amplitude is a result of reggeon exchanges between the initial hadron and nucleons from target--nucleus. This result leads to simple and efficient MC procedure \cite{Am86} to define the interaction cross sections and the number of the nucleons participating in the inelastic hadron--nucleus collision: \begin{itemize} \item We should randomly distribute $B$ nucleons from the target-nucleus on the impact parameter plane according to the weight function $T([\vec{b}^{B}_{j}])$. This function represents probability density to find sets of the nucleon impact parameters $[\vec{b}^{B}_{j}]$, where $j=1,2,...,B$. \item For each pair of projectile hadron $i$ and target nucleon $j$ with choosen impact parameters $\vec{b}_{i}$ and $\vec{b}^{B}_{j}$ we should check whether they interact inelastically or not using the probability $p_{ij}(\vec{b}_{i}-\vec{b}^{B}_{j},s)$, where $s_{ij}=(p_{i}+p_{j})^2$ is the squared total c.m. energy of the given pair with the $4$--momenta $p_{i}$ and $p_{j}$, respectively. \end{itemize} In the Regge--Gribov approach\cite{BT76} the probability for an inelastic collision of pair of $i$ and $j$ as a function at the squared impact parameter difference $b_{ij}^2=(\vec{ b}_i-\vec{ b}_j^B)^2 $ and $s$ is given by \begin{equation} \label{SP3} p_{ij}(\vec{ b}_i-\vec{ b}_j^B,s)= c^{-1}[1-\exp{\{-2u(b_{ij}^2,s)\}}] = \sum_{n=1}^{\infty}p^{(n)}_{ij}(\vec{ b}_i-\vec{ b}_j^B,s), \end{equation} where \begin{equation} \label{SP4} p^{(n)}_{ij}(\vec{ b}_i-\vec{ b}_j^B,s) =c^{-1}\exp{\{-2u(b_{ij}^2,s)\}} \frac{[2u(b_{ij}^2,s)]^{n}}{n!}. \end{equation} is the probability to find the $n$ cut Pomerons or the probability for $2n$ strings produced in an inelastic hadron-nucleon collision. These probabilities are defined in terms of the (eikonal) amplitude of hadron--nucleon elastic scattering with Pomeron exchange: \begin{equation} \label{SP5}u(b_{ij}^2,s)=\frac{z(s)}{2}\exp (-b_{ij}^2/4\lambda (s)). \end{equation} The quantities $z(s)$ and $\lambda (s)$ are expressed through the parameters of the Pomeron trajectory, $\alpha _P^{^{\prime }}=0.25$ $GeV^{-2}$ and $\alpha _P(0)=1.0808$, and the parameters of the Pomeron-hadron vertex $R_P$ and $\gamma _P$: \begin{equation} \label{SP6}z(s)=\frac{2c\gamma _P}{\lambda (s)}(s/s_0)^{\alpha _P(0)-1} \end{equation} \begin{equation} \label{SP7}\lambda (s)=R_P^2+\alpha _P^{^{\prime }}\ln (s/s_0), \end{equation} respectively, where $s_0$ is a dimensional parameter. In Eqs. (\ref{SP3},\ref{SP4}) the so--called shower enhancement coefficient $c$ is introduced to determine the contribution of diffractive dissociation\cite{BT76}. Thus, the probability for diffractive dissociation of a pair of nucleons can be computed as \begin{equation} \label{SP8}p_{ij}^d(\vec b_i-\vec b_j^B,s)=\frac{c-1}{c}[p_{ij}^{tot}(\vec b_i-\vec b_j^B,s)-p_{ij}(\vec b_i-\vec b_j^B,s)], \end{equation} where \begin{equation} \label{SP9}p_{ij}^{tot}(\vec b_i-\vec b_j^B,s)=(2/c)[1-\exp \{-u(b_{ij}^2,s)\}]. \end{equation} The Pomeron parameters are found from a global fit of the total, elastic, differential elastic and diffractive cross sections of the hadron--nucleon interaction at different energies. For the nucleon-nucleon, pion-nucleon and kaon-nucleon collisions the Pomeron vertex parameters and shower enhancement coefficients are found: $R^{2N}_{P}=3.56$ $GeV^{-2}$, $\gamma^{N}_P=3.96$ $GeV^{-2}$, $s^{N}_{0} = 3.0$ $GeV^{2}$, $c^{N}=1.4$ and $R^{2\pi}_{P} = 2.36$ $GeV^{-2}$, $\gamma^{\pi}_P = 2.17$ $GeV^{-2}$, and $R^{2K}_{P} = 1.96$ $GeV^{-2}$, $\gamma^{K} _P = 1.92$ $GeV^{-2}$, $s^{K}_{0} = 2.3$ $GeV^{2}$, $c^{\pi}=1.8$. \subsection{Separation of hadron diffraction excitation.} \hspace{1.0em}For each pair of target hadron $i$ and projectile nucleon $j$ with choosen impact parameters $\vec{b}_{i}$ and $\vec{b}^{B}_{j}$ we should check whether they interact inelastically or not using the probability \begin{equation} \label{SP14} p^{in}_{ij}(\vec{b}_{i}-\vec{b}^{B}_{j},s)= p_{ij}(\vec{b}_{i}-\vec{b}^{B}_{j},s) + p_{ij}^d(\vec b_i^A-\vec b_j^B,s). \end{equation} If interaction will be realized, then we have to consider it to be diffractive or nondiffractive with probabilities \begin{equation} \label{SP15} \frac{p_{ij}^d(\vec b_i-\vec b_j^B,s)}{p^{in}_{ij} (\vec{b}^{A}_{i}-\vec{b}^{B}_{j},s)} \end{equation} and \begin{equation} \label{SP16} \frac{p_{ij}(\vec b_i-\vec b_j^B,s)}{p^{in}_{ij} (\vec{b}^{A}_{i}-\vec{b}^{B}_{j},s)}. \end{equation}