source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/hadronic/theory_driven/PartonString/SampleParticipants.tex @ 1345

Last change on this file since 1345 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 4.8 KB
Line 
1\section{Sample of collision participants
2in nuclear collisions.}
3
4\subsection{MC procedure to define collision participants.}
5\hspace{1.0em} The inelastic
6hadron--nucleus interactions at ultra--relativistic energies are considered
7as
8independent hadron--nucleon  collisions.  It was shown long
9time ago \cite{CK78} for the hadron--nucleus collision that such a
10picture can be obtained starting from the Regge--Gribov
11approach \cite{BT76}, when one assumes that the hadron-nucleus elastic
12scattering amplitude is a result of reggeon exchanges between the
13initial hadron and  nucleons from target--nucleus. This result leads to
14simple and efficient MC procedure \cite{Am86} to define
15the interaction cross sections and the number of the nucleons
16participating in the inelastic hadron--nucleus collision:
17\begin{itemize}
18\item We should randomly distribute
19 $B$
20nucleons from the target-nucleus on the impact parameter plane according
21to the weight function
22$T([\vec{b}^{B}_{j}])$. This function represents
23probability density to find sets of the nucleon impact parameters
24 $[\vec{b}^{B}_{j}]$, where
25$j=1,2,...,B$.
26\item For each pair of projectile hadron $i$ and target nucleon
27$j$ with choosen impact parameters $\vec{b}_{i}$ and
28$\vec{b}^{B}_{j}$ we should check whether they interact inelastically or
29not using the probability $p_{ij}(\vec{b}_{i}-\vec{b}^{B}_{j},s)$,
30where $s_{ij}=(p_{i}+p_{j})^2$ is the squared total c.m.  energy of the
31given pair with the $4$--momenta $p_{i}$ and $p_{j}$, respectively.
32\end{itemize}
33 
34In the Regge--Gribov approach\cite{BT76} the probability for an inelastic
35collision of pair of $i$ and $j$ as a function at the squared impact
36parameter difference $b_{ij}^2=(\vec{ b}_i-\vec{ b}_j^B)^2 $ and $s$
37is given by
38\begin{equation}
39\label{SP3}
40 p_{ij}(\vec{ b}_i-\vec{ b}_j^B,s)=
41 c^{-1}[1-\exp{\{-2u(b_{ij}^2,s)\}}] =
42\sum_{n=1}^{\infty}p^{(n)}_{ij}(\vec{ b}_i-\vec{ b}_j^B,s),
43\end{equation}
44where
45\begin{equation}
46\label{SP4}
47 p^{(n)}_{ij}(\vec{ b}_i-\vec{ b}_j^B,s)
48=c^{-1}\exp{\{-2u(b_{ij}^2,s)\}}
49 \frac{[2u(b_{ij}^2,s)]^{n}}{n!}.
50\end{equation}
51is the probability to find the $n$ cut Pomerons or the probability for
52$2n$ strings produced in an inelastic hadron-nucleon collision.  These
53probabilities are defined in terms of the (eikonal) amplitude of
54hadron--nucleon elastic scattering with Pomeron exchange:
55\begin{equation}
56\label{SP5}u(b_{ij}^2,s)=\frac{z(s)}{2}\exp (-b_{ij}^2/4\lambda (s)).
57\end{equation}
58The quantities $z(s)$ and $\lambda (s)$ are expressed through the
59parameters of the Pomeron trajectory, $\alpha _P^{^{\prime }}=0.25$
60$GeV^{-2}$ and $\alpha _P(0)=1.0808$, and the parameters of the
61Pomeron-hadron vertex $R_P$ and $\gamma _P$:
62\begin{equation}
63\label{SP6}z(s)=\frac{2c\gamma _P}{\lambda (s)}(s/s_0)^{\alpha _P(0)-1} 
64\end{equation}
65\begin{equation}
66\label{SP7}\lambda (s)=R_P^2+\alpha _P^{^{\prime }}\ln (s/s_0),
67\end{equation}
68respectively, where $s_0$ is a dimensional parameter.
69
70In Eqs. (\ref{SP3},\ref{SP4}) the so--called shower enhancement
71coefficient $c$ is introduced to determine the contribution of
72diffractive dissociation\cite{BT76}.  Thus, the probability for
73diffractive dissociation of a pair
74of nucleons can be computed as
75\begin{equation}
76\label{SP8}p_{ij}^d(\vec b_i-\vec b_j^B,s)=\frac{c-1}{c}[p_{ij}^{tot}(\vec
77b_i-\vec b_j^B,s)-p_{ij}(\vec b_i-\vec b_j^B,s)],
78\end{equation} 
79where
80\begin{equation}
81\label{SP9}p_{ij}^{tot}(\vec b_i-\vec b_j^B,s)=(2/c)[1-\exp
82\{-u(b_{ij}^2,s)\}].
83\end{equation}
84
85The Pomeron parameters are found from a global fit of the total,
86elastic, differential elastic and diffractive cross sections of the
87hadron--nucleon interaction at different energies.
88
89For the nucleon-nucleon, pion-nucleon and kaon-nucleon collisions
90the Pomeron vertex
91parameters and shower enhancement coefficients are found:
92$R^{2N}_{P}=3.56$ $GeV^{-2}$, $\gamma^{N}_P=3.96$
93$GeV^{-2}$, $s^{N}_{0} = 3.0$ $GeV^{2}$, $c^{N}=1.4$ and
94$R^{2\pi}_{P} = 2.36$ $GeV^{-2}$, $\gamma^{\pi}_P = 2.17$ $GeV^{-2}$,
95 and $R^{2K}_{P} = 1.96$
96$GeV^{-2}$, $\gamma^{K} _P = 1.92$ $GeV^{-2}$, $s^{K}_{0} = 2.3$
97$GeV^{2}$, $c^{\pi}=1.8$.
98
99\subsection{Separation of hadron diffraction excitation.}
100
101\hspace{1.0em}For each pair of target hadron $i$ and projectile
102nucleon $j$ with choosen impact
103parameters $\vec{b}_{i}$ and $\vec{b}^{B}_{j}$ we should check
104whether they interact inelastically or not using the probability
105\begin{equation}
106\label{SP14}
107p^{in}_{ij}(\vec{b}_{i}-\vec{b}^{B}_{j},s)=
108p_{ij}(\vec{b}_{i}-\vec{b}^{B}_{j},s)
109+ p_{ij}^d(\vec b_i^A-\vec b_j^B,s).
110\end{equation}
111 If interaction will be realized, then
112we have to consider it to be diffractive or nondiffractive with probabilities
113\begin{equation}
114\label{SP15}
115\frac{p_{ij}^d(\vec b_i-\vec b_j^B,s)}{p^{in}_{ij}
116(\vec{b}^{A}_{i}-\vec{b}^{B}_{j},s)}
117\end{equation}
118and
119\begin{equation}
120\label{SP16}
121\frac{p_{ij}(\vec b_i-\vec b_j^B,s)}{p^{in}_{ij}
122(\vec{b}^{A}_{i}-\vec{b}^{B}_{j},s)}.
123\end{equation}
Note: See TracBrowser for help on using the repository browser.