source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/hadronic/theory_driven/Precompound/PreCompoundSim.tex @ 1211

Last change on this file since 1211 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 8.3 KB
Line 
1\section{Simulation of pre-compound reaction}
2
3\hspace{1.0em}The precompound stage of
4nuclear reaction is considered until nuclear
5system is not an equilibrium state.
6Further emission of nuclear fragments or photons from excited
7nucleus is simulated using an equilibrium
8 model.
9
10
11\subsection{Statistical equilibrium condition}
12
13\hspace{1.0em}In the state of statistical equilibrium, which is
14characterized by an eqilibrium number of excitons $n_{eq}$, all three
15type of transitions are equiprobable. Thus $n_{eq}$ is fixed by
16$\omega_{+2}(n_{eq},U) = \omega_{-2}(n_{eq},U)$. From this condition we
17can get
18\begin{equation}
19\label{PCS1}n_{eq} = \sqrt{2gU}.
20\end{equation}
21
22\subsection{Level density of excited (n-exciton) states}
23
24\hspace{1.0em}To obtain Eq. ($\ref{PCS1}$) it was assumed an equidistant
25scheme of single-particle levels with the density $g \approx 0.595 aA$,
26where $a$ is the level density parameter, when we have the level density
27of the $n$-exciton state as
28\begin{equation}
29\label{PCS2} \rho_{n}(U) = \frac{g(gU)^{n-1}}{p!h!(n-1)!}.
30\end{equation}
31
32\subsection{Transition probabilities} 
33
34\hspace{1.0em}The partial transition probabilities changing the exciton
35number by $\Delta n$ is determined by the squared matrix element
36averaged over allowed transitions $<|M|^{2}>$ and the density of final
37states $\rho_{\Delta n}(n,U)$, which are really accessible in this
38transition. It can be defined as following:
39\begin{equation}
40\label{PCS3}\omega_{\Delta n}(n,U)=\frac{2\pi}{h}<|M|^{2}>\rho_{\Delta n}(n,U).
41\end{equation}
42The density of final states $\rho_{\Delta n}(n,U)$ were derived in paper
43\cite{Williams70} using the Eq. ($\ref{PCS2}$) for the level density of
44the $n$-exciton state and later corrected for the Pauli principle and
45indistinguishability of identical excitons in paper \cite{ROB73}:
46\begin{equation}
47\label{PCS4}\rho_{\Delta n = +2}(n,U)=\frac{1}{2}g\frac{[gU - F(p+1,h+1)]^2}
48{n+1} [\frac{gU - F(p+1,h+1)}{gU - F(p,h)}]^{n-1},
49\end{equation}
50\begin{equation}
51\label{PCS5}\rho_{\Delta n = 0}(n,U)=\frac{1}{2}g\frac{[gU - F(p,h)]}{n}
52[p(p-1) + 4ph + h(h-1)]
53\end{equation}
54and
55\begin{equation}
56\label{PCS6}\rho_{\Delta n = -2}(n,U)=\frac{1}{2}gph(n-2),
57\end{equation}
58where $F(p,h)=(p^2 + h^2 + p -h)/4 - h/2$ and it was taken to be equal
59zero.  To avoid calculation of the averaged squared matrix element
60$<|M|^2>$ it was assumed \cite{GMT83} that transition probability
61$\omega_{\Delta n = +2}(n,U)$ is the same as the probability for
62quasi-free scattering of a nucleon above the Fermi level on a nucleon of
63the target nucleus, i. e.
64\begin{equation}
65\label{PCS7}\omega_{\Delta n =+2}(n,U)=\frac{<\sigma(v_{rel})v_{rel}>}{V_{int}}.
66\end{equation}
67In Eq. ($\ref{PCS7}$) the interaction volume is estimated as
68$V_{int}=\frac{4}{3}\pi(2r_c + \lambda/2\pi)^3$,
69with the De Broglie wave length
70$\lambda/2\pi$ corresponding to the relative velocity
71$<v_{rel}>=\sqrt{2T_{rel}/
72m}$, where $m$ is nucleon mass and $r_c = 0.6$ fm.
73
74The averaging in $<\sigma(v_{rel})v_{rel}>$ is further simplified by
75\begin{equation}
76\label{PCS8}<\sigma(v_{rel})v_{rel}> =<\sigma(v_{rel})><v_{rel}>.
77\end{equation}
78For $\sigma (v_{rel})$ we take approximation:
79\begin{equation}
80\label{PCS9}\sigma(v_{rel})=0.5[\sigma_{pp}(v_{rel})+\sigma_{pn}(v_{rel}]P(T_F/T_{rel}),
81\end{equation}
82where factor $P(T_F/T_{rel})$ was introduced to take into account the
83Pauli principle. It is given by
84\begin{equation}
85\label{PCS10} P(T_F/T_{rel})=1 - \frac{7}{5}\frac{T_F}{T_{rel}} 
86\end{equation}
87for $\frac{T_F}{T_{rel}} \leq 0.5$ and
88\begin{equation}
89\label{PCS11} P(T_F/T_{rel})=1 - \frac{7}{5}\frac{T_F}{T_{rel}}+ \frac{2}{5}
90\frac{T_{F}}{T_{rel}}(2 -
91\frac{T_{rel}}{T_F})^{5/2} 
92\end{equation}
93for $\frac{T_F}{T_{rel}} > 0.5$.
94
95The free-particle proton-proton $\sigma_{pp}(v_{rel})$ and
96proton-neutron $\sigma_{pn}(v_{rel})$ interaction cross sections are
97estimated using the equations \cite{Metro58}:
98\begin{equation}
99\label{PCS12}\sigma_{pp}(v_{rel}) =
100 \frac{10.63}{v^2_{rel}}-\frac{29.93}{v_{rel}}+42.9
101\end{equation}
102and
103\begin{equation}
104\label{PCS13}\sigma_{pn}(v_{rel}) =
105 \frac{34.10}{v^2_{rel}}-\frac{82.2}{v_{rel}}+82.2,
106\end{equation}
107where cross sections are given in mbarn.
108 
109The mean relative kinetic energy $T_{rel}$ is needed to calculate
110$<v_{rel}>$ and the factor $P(T_F/T_{rel})$ was computed as
111$T_{rel}=T_{p}+T_{n}$, where mean kinetic energies of projectile
112nucleons $T_p = T_F +U/n$ and target nucleons $T_N = 3T_F/5$,
113respecively.
114 
115
116Combining Eqs. ($\ref{PCS3}$) - ($\ref{PCS7}$) and assuming that
117$<|M|^{2}>$ are the same for transitions with $\Delta n = 0$ and $\Delta
118n = \pm 2$ we obtain for another transition probabilities:
119\begin{equation}
120\begin{array}{c}
121\label{PCS14}\omega_{\Delta n =0}(n,U)= \\
122=\frac{<\sigma(v_{rel})v_{rel}>}{V_{int}}
123\frac{n+1}{n}[\frac{gU - F(p,h)}{gU - F(p+1,h+1)}]^{n+1}
124\frac{p(p-1) + 4ph +h(h-1)}{gU - F(p,h)}
125\end{array} 
126\end{equation}
127and
128\begin{equation}
129\begin{array}{c}
130\label{PCS15}\omega_{\Delta n
131= -2}(n,U)= \\
132=\frac{<\sigma(v_{rel})v_{rel}>}{V_{int}}
133 [\frac{gU - F(p,h)}{gU - F(p+1,h+1)}]^{n+1}
134 \frac{ph(n+1)(n-2)}{[gU - F(p,h)]^2}.
135\end{array} 
136\end{equation}
137
138\subsection{Emission probabilities for nucleons} 
139
140\hspace{1.0em}Emission process probability has been choosen similar as
141in the classical equilibrium Weisskopf-Ewing model \cite{WE40.pre}.
142Probability to emit nucleon $b$ in the energy interval $(T_b, T_b+dT_b)$
143is given
144\begin{equation}
145\label{PCS16}W_{b}(n,U,T_b) = \sigma_{b}(T_b)\frac{(2s_b+1)\mu_b}{\pi^2 h^3}
146R_b(p,h)
147\frac{\rho_{n-b}(E^{*})}{\rho_n(U)}T_b,
148\end{equation}
149where $\sigma_{b}(T_b)$ is the inverse (absorption of nucleon $b$)
150reaction cross section, $s_b$ and $m_b$ are nucleon spin and reduced
151mass, the factor $R_b(p,h)$ takes into account the condition for the
152exciton to be a proton or neutron, $\rho_{n-b}(E^{*})$ and $\rho_n(U)$
153are level densities of nucleus after and before nucleon emission are
154defined in the evaporation model, respectively and $E^{*}=U-Q_b-T_b$ is the
155excitation energy of nucleus after fragment emission.
156 
157\subsection{Emission probabilities for complex fragments}
158
159\hspace{1.0em}It was assumed \cite{GMT83} that nucleons inside excited
160nucleus are able to "condense" forming complex fragment.  The
161"condensation" probability to create fragment consisting from $N_b$
162nucleons inside nucleus with $A$ nucleons is given by
163\begin{equation}
164\label{PCS17} \gamma_{N_b}=N^3_b(V_b/V)^{N_b -1}=N^3_b(N_b/A)^{N_b -1},
165\end{equation}
166where $V_b$ and $V$ are fragment $b$ and nucleus volumes, respectively.
167The last equation was estimated \cite{GMT83} as the overlap integral of
168(constant inside a volume) wave function of independent nucleons with
169that of the fragment.
170
171During the prequilibrium stage a "condense" fragment can be emitted.
172The probability to emit a fragment can be written as \cite{GMT83}
173\begin{equation}
174\label{PCS18}W_{b}(n,U,T_b) =\gamma_{N_b}R_b(p,h)
175 \frac{\rho(N_b, 0, T_b + Q_b)}{g_b(T_b)}
176 \sigma_{b}(T_b)\frac{(2s_b+1)\mu_b}{\pi^2 h^3}
177\frac{\rho_{n-b}(E^{*})}{\rho_n(U)}T_b,
178\end{equation}
179where
180\begin{equation}
181\label{PCS19}g_b(T_b)=\frac{V_b(2s_b+1)(2\mu_b)^{3/2}}{4\pi^2 h^3}(T_b+Q_b)^{1/2} 
182\end{equation}
183is the single-particle density for complex fragment $b$, which is
184obtained by assuming that complex fragment moves inside volume $V_b$ in
185the uniform potential well whose depth is equal to be $Q_b$, and the
186factor $R_b(p,h)$ garantees correct isotopic composition of a fragment
187$b$.
188
189\subsection{The total probability}
190
191\hspace{1.0em}This probability is defined as
192\begin{equation}
193\label{PCS20} W_{tot}(n,U) =\sum_{\Delta n =+2,0,-2}\omega_{\Delta n }(n,U) +
194\sum_{b=1}^{6}W_b(n,U),
195\end{equation} 
196where total emission $W_b(n,U)$ probabilities to emit fragment $b$ can
197be obtained from Eqs. ($\ref{PCS16}$) and ($\ref{PCS18}$) by
198integration over $T_b$:
199\begin{equation}
200\label{PCS21} 
201W_{b}(n,U)=\int_{V_b}^{U-Q_b} W_b(n,U,T_b)dT_b.
202\end{equation}
203
204 
205\subsection{Calculation of kinetic energies for emitted particle}
206
207\hspace{1.0em}The equations ($\ref{PCS16}$) and ($\ref{PCS18}$)
208 are
209 used to sample kinetic energies of emitted fragment.
210
211\subsection{Parameters of residual nucleus.}
212
213\hspace{1.0em}After fragment emission we  update parameter
214of decaying nucleus:
215\begin{equation}
216\label{PCS24} 
217\begin{array}{c}
218A_f=A-A_b; Z_f=Z-Z_b; P_f = P_0 - p_b; \\ 
219E_f^{*}=\sqrt{E_f^2-\vec{P}^2_f} - M(A_f,Z_f).
220\end{array}
221\end{equation}
222Here $p_b$ is the evaporated fragment four momentum.
223
224
Note: See TracBrowser for help on using the repository browser.