source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/optical/optical.tex @ 1345

Last change on this file since 1345 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 12.6 KB
Line 
1% GEANT4 Physics Reference Manual - Optical Photons
2% in LaTex 2e - adopted from GEANT3 manual by P. Gumplinger
3
4\section{Interactions of optical photons}
5
6Optical photons are produced when a charged particle traverses:
7
8\begin{enumerate}
9\item a dielectric material with velocity above the \v{C}erenkov
10threshold;
11\item a scintillating material.
12\end{enumerate}
13
14\subsection{Physics processes for optical photons}
15
16A photon is called optical when its wavelength is much greater than the
17typical atomic spacing, for instance when $\lambda \geq 10nm$ 
18which corresponds to an energy $E \leq 100eV$\@. Production of an
19optical photon in a HEP detector is primarily due to:
20
21\begin{enumerate}
22\item \v{C}erenkov effect;
23\item Scintillation.
24\end{enumerate}
25
26Optical photons undergo three kinds of interactions:
27
28\begin{enumerate}
29\item Elastic (Rayleigh) scattering;
30\item Absorption;
31\item Medium boundary interactions.
32\end{enumerate}
33
34\subsubsection{Rayleigh scattering}
35
36For optical photons Rayleigh scattering is usually unimportant. For
37$\lambda=.2\mu m$ we have $\sigma_{Rayleigh} \approx .2b$ for $N_{2}$ or
38$O_{2}$ which gives a mean free path of $\approx1.7km$ in air and
39$\approx1m$ in quartz. Two important exceptions are aerogel, which is
40used as a \v{C}erenkov radiator for some special applications and large
41water \v{C}erenkov detectors for neutrino detection.
42
43The differential cross section in Rayleigh scattering,
44$d\sigma/d\Omega$, is proportional to $\cos^{2}\theta$, where $\theta$ 
45is the polar angle of the new polarization with respect to the old
46polarization.
47
48\subsubsection{Absorption}
49
50Absorption is important for optical photons because it determines the
51lower $\lambda$ limit in the window of transparency of the radiator.
52Absorption competes with photo-ionization in producing the signal in the
53detector, so it must be treated properly in the tracking of optical
54photons.
55
56\subsubsection {Medium boundary effects}
57
58When a photon arrives at the boundary of a dielectric medium, its
59behaviour depends on the nature of the two materials which join at that
60boundary:
61
62\begin{itemize}
63\item Case dielectric $\rightarrow$ dielectric.\\
64The photon can be transmitted (refracted ray) or reflected (reflected
65ray). In case where the photon can only be reflected, total internal
66reflection takes place.
67\item Case dielectric $\rightarrow$ metal.\\
68The photon can be absorbed by the metal or reflected back into the
69dielectric. If the photon is absorbed it can be detected according to
70the photoelectron efficiency of the metal.
71\item Case dielectric $\rightarrow$ black material.\\
72A black material is a tracking medium for which the user has not
73defined any optical property. In this case the photon is immediately
74absorbed undetected.
75\end{itemize}
76
77\subsection {Photon polarization}
78
79The photon polarization is defined as a two component vector normal to
80the direction of the photon:
81
82\begin{displaymath}
83{a_{1}e^{i\Phi_{1}} \choose a_{2}e^{i\Phi_{2}}} =
84e^{\Phi_{o}}
85{a_{1}e^{i\Phi_{c}} \choose a_{2}e^{-i\Phi_{c}}}
86\end{displaymath}
87
88where $\Phi_{c}= (\Phi_{1}-\Phi_{2})/2$ is called circularity and
89$\Phi_{o}=(\Phi_{1}+\Phi_{2})/2$ is called overall phase. Circularity
90gives the left- or right-polarization characteristic of the photon. RICH
91materials usually do not distinguish between the two polarizations and
92photons produced by the \v{C}erenkov effect and scintillation are
93linearly polarized, that is $\Phi_{c}=0$\@.
94
95The overall phase is important in determining interference effects between
96coherent waves. These are important only in layers of thickness comparable
97with the wavelength, such as interference filters on mirrors. The effects of
98such coatings can be accounted for by the empirical reflectivity factor for
99the surface, and do not require a microscopic simulation. GEANT4 does not
100keep track of the overall phase.
101
102Vector polarization is described by the polarization angle $\tan \Psi =
103a_{2}/a_{1}$\@. Reflection/transmission probabilities are sensitive to
104the state of linear polarization, so this has to be taken into account.
105One parameter is sufficient to describe vector polarization, but to
106avoid too many trigonometrical transformations, a unit vector
107perpendicular to the direction of the photon is used in GEANT4. The
108polarization vector is a data member of \texttt{G4DynamicParticle}.
109
110\subsection{Tracking of the photons}
111
112Optical photons are subject to in flight absorption, Rayleigh scattering
113and boundary action. As explained above, the status of the photon is
114defined by two vectors, the photon momentum ($\vec{p}=\hbar \vec{k}$) and
115photon polarization ($\vec{e}$). By convention the direction of the
116polarization vector is that of the electric field. Let also $\vec{u}$ be
117the normal to the material boundary at the point of intersection,
118pointing out of the material which the photon is leaving and toward the
119one which the photon is entering. The behaviour of a photon at the
120surface boundary is determined by three quantities:
121
122\begin{enumerate}
123\item refraction or reflection angle, this represents the kinematics of
124the effect;
125\item amplitude of the reflected and refracted waves, this is the
126dynamics of the effect;
127\item probability of the photon to be refracted or reflected, this is
128the quantum mechanical effect which we have to take into account if we
129want to describe the photon as a particle and not as a wave.
130\end{enumerate}
131
132As said above, we distinguish three kinds of boundary action, dielectric
133$\rightarrow$ black material, dielectric $\rightarrow$ metal, dielectric
134$\rightarrow$ dielectric. The first case is trivial, in the sense that
135the photon is immediately absorbed and it goes undetected.
136
137To determine the behaviour of the photon at the boundary, we will at
138first treat it as an homogeneous monochromatic plane wave:
139
140\begin{displaymath}
141\vec{E} = \vec{E}_{0}e^{i\vec{k} \cdot \vec{x}-i\omega t}
142\end{displaymath}
143\begin{displaymath}
144\vec{B} = \sqrt{\mu \epsilon} \frac{\vec{k} \times \vec{E}}{k}
145\end{displaymath}
146
147\subsubsection{Case dielectric $\rightarrow$ dielectric}
148
149In the classical description the incoming wave splits into a reflected
150wave (quantities with a double prime) and a refracted wave (quantities
151with a single prime). Our problem is solved if we find the following
152quantities:
153
154\begin{displaymath}
155\vec{E}' = \vec{E}_{0}' e^{i\vec{k}'\cdot \vec{x}-i\omega t}
156\end{displaymath}
157\begin{displaymath}
158\vec{E}'' = \vec{E}_{0}'' e^{i\vec{k}''\cdot \vec{x}-i\omega t}
159\end{displaymath}
160
161For the wave numbers the following relations hold:
162
163\begin{displaymath}
164|\vec{k}| = |\vec{k}''| = k = \frac{\omega}{c}\sqrt{\mu \epsilon}
165\end{displaymath}
166\begin{displaymath}
167|\vec{k}'| = k' = \frac{\omega}{c}\sqrt{\mu ' \epsilon '}
168\end{displaymath}
169
170Where the speed of the wave in the medium is $v=c/\sqrt{\mu \epsilon}$
171and the quantity $n=c/v=\sqrt{\mu \epsilon}$ is called refractive index
172of the medium. The condition that the three waves, refracted, reflected
173and incident have the same phase at the surface of the medium, gives us
174the well known Fresnel law:
175
176\begin{displaymath}
177(\vec{k} \cdot \vec{x})_{surf} = (\vec{k}' \cdot \vec{x})_{surf} =
178(\vec{k}'' \cdot \vec{x})_{surf}
179\end{displaymath}
180
181\begin{displaymath}
182k \sin i = k' \sin r = k'' \sin r'
183\end{displaymath}
184
185where $i, r, r'$ are, respectively, the angle of the incident, refracted
186and reflected ray with the normal to the surface. From this formula the
187well known condition emerges:
188
189\begin{displaymath}
190         i  =  r'
191\end{displaymath}
192\begin{displaymath}
193\frac{\sin i}{\sin r} = \sqrt{\frac{\mu ' \epsilon '}{\mu \epsilon}} =
194\frac{n'}{n}
195\end{displaymath}
196
197The dynamic properties of the wave at the boundary are derived from
198Maxwell's equations which impose the continuity of the normal components
199of $\vec{D}$ and $\vec{B}$ and of the tangential components of $\vec{E}$
200and $\vec{H}$ at the surface boundary. The resulting ratios between the
201amplitudes of the the generated waves with respect to the incoming one
202are expressed in the two following cases:
203
204\begin{enumerate}
205
206\item a plane wave with the electric field (polarization vector)
207perpendicular to the plane defined by the photon direction and the
208normal to the boundary:
209
210\begin{displaymath}
211\frac{E_{0}'}{E_{0}} = \frac{2n\cos i}{n \cos i = \frac{\mu}{\mu '}
212n' \cos r} = \frac{2n \cos i}{n \cos i + n' \cos r}
213\end{displaymath}
214\begin{displaymath}
215\frac{E_{0}''}{E_{0}} = \frac{n \cos i - \frac{\mu}{\mu '}
216n' \cos r}{n \cos i + \frac{\mu}{\mu '}n' \cos r} =
217\frac{n \cos i - n' \cos r}{n \cos i + n' \cos r}
218\end{displaymath}
219
220where we suppose, as it is legitimate for visible or near-visible
221light, that $\mu/\mu ' \approx 1$;
222
223\item a plane wave with the electric field parallel to the above
224surface:
225
226\begin{displaymath}
227\frac{E_{0}'}{E_{0}} = \frac{2n \cos i}{\frac{\mu}{\mu '}n'
228\cos i + n \cos r} = \frac{2n \cos i}{n' \cos i + n \cos r}
229\end{displaymath}
230\begin{displaymath}
231\frac{E_{0}''}{E_{0}} = \frac{\frac{\mu}{\mu '}n' \cos i - n \cos r}
232{\frac{\mu}{\mu '}n' \cos i + n \cos r} =
233\frac{n' \cos i - n \cos r}{n' \cos i + n \cos r}
234\end{displaymath}
235
236with the same approximation as above.
237
238\end{enumerate}
239
240We note that in case of photon perpendicular to the surface, the
241following relations hold:
242
243\begin{displaymath}
244\frac{E_{0}'}{E_{0}} = \frac{2n}{n'+n} \qquad
245\frac{E_{0}''}{E_{0}} = \frac{n'-n}{n'+n}
246\end{displaymath}
247
248where the sign convention for the parallel field has been adopted. This
249means that if $n'>n$ there is a phase inversion for the reflected wave.
250
251Any incoming wave can be separated into one piece polarized parallel to
252the plane and one polarized perpendicular, and the two components
253treated accordingly.
254
255To maintain the particle description of the photon, the probability to
256have a refracted or reflected photon must be calculated. The constraint
257is that the number of photons be conserved, and this can be imposed via
258the conservation of the energy flux at the boundary, as the number of
259photons is proportional to the energy. The energy current is given by
260the expression:
261
262\begin{displaymath}
263\vec{S} = \frac{1}{2}\frac{c}{4\pi}\sqrt{\mu \epsilon}
264\vec{E} \times \vec{H} = \frac{c}{8\pi}\sqrt{\frac{\epsilon}{\mu}}
265E_{0}^{2}\hat{k}
266\end{displaymath}
267
268and the energy balance on a unit area of the boundary requires that:
269
270\begin{displaymath}
271\vec{S} \cdot \vec{u} = \vec{S}' \cdot \vec{u} - \vec{S}'' \cdot \vec{u}
272\end{displaymath}
273\begin{displaymath}
274S \cos i = S' cos r + S'' cos i
275\end{displaymath}
276\begin{displaymath}
277\frac{c}{8\pi}\frac{1}{\mu}nE_{0}^{2}\cos i =
278\frac{c}{8\pi}\frac{1}{\mu '}n'E_{0}'^{2}\cos r +
279\frac{c}{8\pi}\frac{1}{\mu}nE_{0}''^{2}\cos i
280\end{displaymath}
281
282If we set again $\mu /\mu ' \approx 1$, then the transmission
283probability for the photon will be:
284
285\begin{displaymath}
286T = (\frac{E_{0}'}{E_{0}})^{2} \frac{n' \cos r}{n \cos i}
287\end{displaymath}
288
289and the corresponding probability to be reflected will be $R=1-T$.
290
291In case of reflection, the relation between the incoming photon
292($\vec{k},\vec{e}$), the refracted one ($\vec{k}', \vec{e}'$) and the
293reflected one ($\vec{k}'', \vec{e}''$) is given by the following
294relations:
295
296\begin{displaymath}
297\vec{q} = \vec{k} \times \vec{u}
298\end{displaymath}
299\begin{displaymath}
300\vec{e}_{\perp} = (\frac{\vec{e} \cdot
301\vec{q}}{|\vec{q}|}) \frac{\vec{q}}{|\vec{q}|}
302\end{displaymath}
303\begin{displaymath}
304\vec{e}_{\parallel} = \vec{e} - \vec{e}_{\perp}
305\end{displaymath}
306\begin{displaymath}
307e_{\parallel}' = e_{\parallel} \frac{2n \cos i}{n'\cos i + n \cos r}
308\end{displaymath}
309\begin{displaymath}
310e_{\perp|}' = e_{\perp} \frac{2n \cos i}{n \cos i + n' \cos r} 
311\end{displaymath}
312\begin{displaymath} 
313e_{\parallel}'' = \frac{n'}{n}e_{\parallel}' - e_{\parallel}
314\end{displaymath} 
315\begin{displaymath}
316e_{\perp}'' = e_{\perp}' - e_{\perp}
317\end{displaymath} 
318
319After transmission or reflection of the photon, the polarization vector
320is re-normalized to 1. In the case where $\sin r = n \sin i/n' > 1$ then
321there cannot be a refracted wave, and in this case we have a total
322internal reflection according to the following formulas:
323\begin{displaymath}
324\vec{k}'' = \vec{k} - 2(\vec{k} \cdot \vec{u})\vec{u}
325\end{displaymath}
326\begin{displaymath}
327\vec{e}'' = -\vec{e} + 2(\vec{e} \cdot \vec{u})\vec{u}
328\end{displaymath}
329
330\subsubsection{Case dielectric $\rightarrow$ metal}
331
332In this case the photon cannot be transmitted. So the probability for
333the photon to be absorbed by the metal is estimated according to the
334table provided by the user. If the photon is not absorbed, it is
335reflected.
336
337\begin{latexonly}
338
339\begin{thebibliography}{99}
340\bibitem{one} J.D.~Jackson, \emph{Classical Electrodynamics},
341J.~Wiley \& Sons Inc., New York, 1975.
342\end{thebibliography}
343
344\end{latexonly}
345
346\begin{htmlonly}
347
348\subsection{Bibliography}
349
350\begin{enumerate}
351\item J.D.~Jackson, \emph{Classical Electrodynamics},
352J.~Wiley \& Sons Inc., New York, 1975.
353\end{enumerate}
354
355\end{htmlonly}
356
Note: See TracBrowser for help on using the repository browser.