| 1 | % GEANT4 Physics Reference Manual - Optical Photons
|
|---|
| 2 | % in LaTex 2e - adopted from GEANT3 manual by P. Gumplinger
|
|---|
| 3 |
|
|---|
| 4 | \section{Interactions of optical photons}
|
|---|
| 5 |
|
|---|
| 6 | Optical photons are produced when a charged particle traverses:
|
|---|
| 7 |
|
|---|
| 8 | \begin{enumerate}
|
|---|
| 9 | \item a dielectric material with velocity above the \v{C}erenkov
|
|---|
| 10 | threshold;
|
|---|
| 11 | \item a scintillating material.
|
|---|
| 12 | \end{enumerate}
|
|---|
| 13 |
|
|---|
| 14 | \subsection{Physics processes for optical photons}
|
|---|
| 15 |
|
|---|
| 16 | A photon is called optical when its wavelength is much greater than the
|
|---|
| 17 | typical atomic spacing, for instance when $\lambda \geq 10nm$
|
|---|
| 18 | which corresponds to an energy $E \leq 100eV$\@. Production of an
|
|---|
| 19 | optical photon in a HEP detector is primarily due to:
|
|---|
| 20 |
|
|---|
| 21 | \begin{enumerate}
|
|---|
| 22 | \item \v{C}erenkov effect;
|
|---|
| 23 | \item Scintillation.
|
|---|
| 24 | \end{enumerate}
|
|---|
| 25 |
|
|---|
| 26 | Optical photons undergo three kinds of interactions:
|
|---|
| 27 |
|
|---|
| 28 | \begin{enumerate}
|
|---|
| 29 | \item Elastic (Rayleigh) scattering;
|
|---|
| 30 | \item Absorption;
|
|---|
| 31 | \item Medium boundary interactions.
|
|---|
| 32 | \end{enumerate}
|
|---|
| 33 |
|
|---|
| 34 | \subsubsection{Rayleigh scattering}
|
|---|
| 35 |
|
|---|
| 36 | For optical photons Rayleigh scattering is usually unimportant. For
|
|---|
| 37 | $\lambda=.2\mu m$ we have $\sigma_{Rayleigh} \approx .2b$ for $N_{2}$ or
|
|---|
| 38 | $O_{2}$ which gives a mean free path of $\approx1.7km$ in air and
|
|---|
| 39 | $\approx1m$ in quartz. Two important exceptions are aerogel, which is
|
|---|
| 40 | used as a \v{C}erenkov radiator for some special applications and large
|
|---|
| 41 | water \v{C}erenkov detectors for neutrino detection.
|
|---|
| 42 |
|
|---|
| 43 | The differential cross section in Rayleigh scattering,
|
|---|
| 44 | $d\sigma/d\Omega$, is proportional to $\cos^{2}\theta$, where $\theta$
|
|---|
| 45 | is the polar angle of the new polarization with respect to the old
|
|---|
| 46 | polarization.
|
|---|
| 47 |
|
|---|
| 48 | \subsubsection{Absorption}
|
|---|
| 49 |
|
|---|
| 50 | Absorption is important for optical photons because it determines the
|
|---|
| 51 | lower $\lambda$ limit in the window of transparency of the radiator.
|
|---|
| 52 | Absorption competes with photo-ionization in producing the signal in the
|
|---|
| 53 | detector, so it must be treated properly in the tracking of optical
|
|---|
| 54 | photons.
|
|---|
| 55 |
|
|---|
| 56 | \subsubsection {Medium boundary effects}
|
|---|
| 57 |
|
|---|
| 58 | When a photon arrives at the boundary of a dielectric medium, its
|
|---|
| 59 | behaviour depends on the nature of the two materials which join at that
|
|---|
| 60 | boundary:
|
|---|
| 61 |
|
|---|
| 62 | \begin{itemize}
|
|---|
| 63 | \item Case dielectric $\rightarrow$ dielectric.\\
|
|---|
| 64 | The photon can be transmitted (refracted ray) or reflected (reflected
|
|---|
| 65 | ray). In case where the photon can only be reflected, total internal
|
|---|
| 66 | reflection takes place.
|
|---|
| 67 | \item Case dielectric $\rightarrow$ metal.\\
|
|---|
| 68 | The photon can be absorbed by the metal or reflected back into the
|
|---|
| 69 | dielectric. If the photon is absorbed it can be detected according to
|
|---|
| 70 | the photoelectron efficiency of the metal.
|
|---|
| 71 | \item Case dielectric $\rightarrow$ black material.\\
|
|---|
| 72 | A black material is a tracking medium for which the user has not
|
|---|
| 73 | defined any optical property. In this case the photon is immediately
|
|---|
| 74 | absorbed undetected.
|
|---|
| 75 | \end{itemize}
|
|---|
| 76 |
|
|---|
| 77 | \subsection {Photon polarization}
|
|---|
| 78 |
|
|---|
| 79 | The photon polarization is defined as a two component vector normal to
|
|---|
| 80 | the direction of the photon:
|
|---|
| 81 |
|
|---|
| 82 | \begin{displaymath}
|
|---|
| 83 | {a_{1}e^{i\Phi_{1}} \choose a_{2}e^{i\Phi_{2}}} =
|
|---|
| 84 | e^{\Phi_{o}}
|
|---|
| 85 | {a_{1}e^{i\Phi_{c}} \choose a_{2}e^{-i\Phi_{c}}}
|
|---|
| 86 | \end{displaymath}
|
|---|
| 87 |
|
|---|
| 88 | where $\Phi_{c}= (\Phi_{1}-\Phi_{2})/2$ is called circularity and
|
|---|
| 89 | $\Phi_{o}=(\Phi_{1}+\Phi_{2})/2$ is called overall phase. Circularity
|
|---|
| 90 | gives the left- or right-polarization characteristic of the photon. RICH
|
|---|
| 91 | materials usually do not distinguish between the two polarizations and
|
|---|
| 92 | photons produced by the \v{C}erenkov effect and scintillation are
|
|---|
| 93 | linearly polarized, that is $\Phi_{c}=0$\@.
|
|---|
| 94 |
|
|---|
| 95 | The overall phase is important in determining interference effects between
|
|---|
| 96 | coherent waves. These are important only in layers of thickness comparable
|
|---|
| 97 | with the wavelength, such as interference filters on mirrors. The effects of
|
|---|
| 98 | such coatings can be accounted for by the empirical reflectivity factor for
|
|---|
| 99 | the surface, and do not require a microscopic simulation. GEANT4 does not
|
|---|
| 100 | keep track of the overall phase.
|
|---|
| 101 |
|
|---|
| 102 | Vector polarization is described by the polarization angle $\tan \Psi =
|
|---|
| 103 | a_{2}/a_{1}$\@. Reflection/transmission probabilities are sensitive to
|
|---|
| 104 | the state of linear polarization, so this has to be taken into account.
|
|---|
| 105 | One parameter is sufficient to describe vector polarization, but to
|
|---|
| 106 | avoid too many trigonometrical transformations, a unit vector
|
|---|
| 107 | perpendicular to the direction of the photon is used in GEANT4. The
|
|---|
| 108 | polarization vector is a data member of \texttt{G4DynamicParticle}.
|
|---|
| 109 |
|
|---|
| 110 | \subsection{Tracking of the photons}
|
|---|
| 111 |
|
|---|
| 112 | Optical photons are subject to in flight absorption, Rayleigh scattering
|
|---|
| 113 | and boundary action. As explained above, the status of the photon is
|
|---|
| 114 | defined by two vectors, the photon momentum ($\vec{p}=\hbar \vec{k}$) and
|
|---|
| 115 | photon polarization ($\vec{e}$). By convention the direction of the
|
|---|
| 116 | polarization vector is that of the electric field. Let also $\vec{u}$ be
|
|---|
| 117 | the normal to the material boundary at the point of intersection,
|
|---|
| 118 | pointing out of the material which the photon is leaving and toward the
|
|---|
| 119 | one which the photon is entering. The behaviour of a photon at the
|
|---|
| 120 | surface boundary is determined by three quantities:
|
|---|
| 121 |
|
|---|
| 122 | \begin{enumerate}
|
|---|
| 123 | \item refraction or reflection angle, this represents the kinematics of
|
|---|
| 124 | the effect;
|
|---|
| 125 | \item amplitude of the reflected and refracted waves, this is the
|
|---|
| 126 | dynamics of the effect;
|
|---|
| 127 | \item probability of the photon to be refracted or reflected, this is
|
|---|
| 128 | the quantum mechanical effect which we have to take into account if we
|
|---|
| 129 | want to describe the photon as a particle and not as a wave.
|
|---|
| 130 | \end{enumerate}
|
|---|
| 131 |
|
|---|
| 132 | As said above, we distinguish three kinds of boundary action, dielectric
|
|---|
| 133 | $\rightarrow$ black material, dielectric $\rightarrow$ metal, dielectric
|
|---|
| 134 | $\rightarrow$ dielectric. The first case is trivial, in the sense that
|
|---|
| 135 | the photon is immediately absorbed and it goes undetected.
|
|---|
| 136 |
|
|---|
| 137 | To determine the behaviour of the photon at the boundary, we will at
|
|---|
| 138 | first treat it as an homogeneous monochromatic plane wave:
|
|---|
| 139 |
|
|---|
| 140 | \begin{displaymath}
|
|---|
| 141 | \vec{E} = \vec{E}_{0}e^{i\vec{k} \cdot \vec{x}-i\omega t}
|
|---|
| 142 | \end{displaymath}
|
|---|
| 143 | \begin{displaymath}
|
|---|
| 144 | \vec{B} = \sqrt{\mu \epsilon} \frac{\vec{k} \times \vec{E}}{k}
|
|---|
| 145 | \end{displaymath}
|
|---|
| 146 |
|
|---|
| 147 | \subsubsection{Case dielectric $\rightarrow$ dielectric}
|
|---|
| 148 |
|
|---|
| 149 | In the classical description the incoming wave splits into a reflected
|
|---|
| 150 | wave (quantities with a double prime) and a refracted wave (quantities
|
|---|
| 151 | with a single prime). Our problem is solved if we find the following
|
|---|
| 152 | quantities:
|
|---|
| 153 |
|
|---|
| 154 | \begin{displaymath}
|
|---|
| 155 | \vec{E}' = \vec{E}_{0}' e^{i\vec{k}'\cdot \vec{x}-i\omega t}
|
|---|
| 156 | \end{displaymath}
|
|---|
| 157 | \begin{displaymath}
|
|---|
| 158 | \vec{E}'' = \vec{E}_{0}'' e^{i\vec{k}''\cdot \vec{x}-i\omega t}
|
|---|
| 159 | \end{displaymath}
|
|---|
| 160 |
|
|---|
| 161 | For the wave numbers the following relations hold:
|
|---|
| 162 |
|
|---|
| 163 | \begin{displaymath}
|
|---|
| 164 | |\vec{k}| = |\vec{k}''| = k = \frac{\omega}{c}\sqrt{\mu \epsilon}
|
|---|
| 165 | \end{displaymath}
|
|---|
| 166 | \begin{displaymath}
|
|---|
| 167 | |\vec{k}'| = k' = \frac{\omega}{c}\sqrt{\mu ' \epsilon '}
|
|---|
| 168 | \end{displaymath}
|
|---|
| 169 |
|
|---|
| 170 | Where the speed of the wave in the medium is $v=c/\sqrt{\mu \epsilon}$
|
|---|
| 171 | and the quantity $n=c/v=\sqrt{\mu \epsilon}$ is called refractive index
|
|---|
| 172 | of the medium. The condition that the three waves, refracted, reflected
|
|---|
| 173 | and incident have the same phase at the surface of the medium, gives us
|
|---|
| 174 | the well known Fresnel law:
|
|---|
| 175 |
|
|---|
| 176 | \begin{displaymath}
|
|---|
| 177 | (\vec{k} \cdot \vec{x})_{surf} = (\vec{k}' \cdot \vec{x})_{surf} =
|
|---|
| 178 | (\vec{k}'' \cdot \vec{x})_{surf}
|
|---|
| 179 | \end{displaymath}
|
|---|
| 180 |
|
|---|
| 181 | \begin{displaymath}
|
|---|
| 182 | k \sin i = k' \sin r = k'' \sin r'
|
|---|
| 183 | \end{displaymath}
|
|---|
| 184 |
|
|---|
| 185 | where $i, r, r'$ are, respectively, the angle of the incident, refracted
|
|---|
| 186 | and reflected ray with the normal to the surface. From this formula the
|
|---|
| 187 | well known condition emerges:
|
|---|
| 188 |
|
|---|
| 189 | \begin{displaymath}
|
|---|
| 190 | i = r'
|
|---|
| 191 | \end{displaymath}
|
|---|
| 192 | \begin{displaymath}
|
|---|
| 193 | \frac{\sin i}{\sin r} = \sqrt{\frac{\mu ' \epsilon '}{\mu \epsilon}} =
|
|---|
| 194 | \frac{n'}{n}
|
|---|
| 195 | \end{displaymath}
|
|---|
| 196 |
|
|---|
| 197 | The dynamic properties of the wave at the boundary are derived from
|
|---|
| 198 | Maxwell's equations which impose the continuity of the normal components
|
|---|
| 199 | of $\vec{D}$ and $\vec{B}$ and of the tangential components of $\vec{E}$
|
|---|
| 200 | and $\vec{H}$ at the surface boundary. The resulting ratios between the
|
|---|
| 201 | amplitudes of the the generated waves with respect to the incoming one
|
|---|
| 202 | are expressed in the two following cases:
|
|---|
| 203 |
|
|---|
| 204 | \begin{enumerate}
|
|---|
| 205 |
|
|---|
| 206 | \item a plane wave with the electric field (polarization vector)
|
|---|
| 207 | perpendicular to the plane defined by the photon direction and the
|
|---|
| 208 | normal to the boundary:
|
|---|
| 209 |
|
|---|
| 210 | \begin{displaymath}
|
|---|
| 211 | \frac{E_{0}'}{E_{0}} = \frac{2n\cos i}{n \cos i = \frac{\mu}{\mu '}
|
|---|
| 212 | n' \cos r} = \frac{2n \cos i}{n \cos i + n' \cos r}
|
|---|
| 213 | \end{displaymath}
|
|---|
| 214 | \begin{displaymath}
|
|---|
| 215 | \frac{E_{0}''}{E_{0}} = \frac{n \cos i - \frac{\mu}{\mu '}
|
|---|
| 216 | n' \cos r}{n \cos i + \frac{\mu}{\mu '}n' \cos r} =
|
|---|
| 217 | \frac{n \cos i - n' \cos r}{n \cos i + n' \cos r}
|
|---|
| 218 | \end{displaymath}
|
|---|
| 219 |
|
|---|
| 220 | where we suppose, as it is legitimate for visible or near-visible
|
|---|
| 221 | light, that $\mu/\mu ' \approx 1$;
|
|---|
| 222 |
|
|---|
| 223 | \item a plane wave with the electric field parallel to the above
|
|---|
| 224 | surface:
|
|---|
| 225 |
|
|---|
| 226 | \begin{displaymath}
|
|---|
| 227 | \frac{E_{0}'}{E_{0}} = \frac{2n \cos i}{\frac{\mu}{\mu '}n'
|
|---|
| 228 | \cos i + n \cos r} = \frac{2n \cos i}{n' \cos i + n \cos r}
|
|---|
| 229 | \end{displaymath}
|
|---|
| 230 | \begin{displaymath}
|
|---|
| 231 | \frac{E_{0}''}{E_{0}} = \frac{\frac{\mu}{\mu '}n' \cos i - n \cos r}
|
|---|
| 232 | {\frac{\mu}{\mu '}n' \cos i + n \cos r} =
|
|---|
| 233 | \frac{n' \cos i - n \cos r}{n' \cos i + n \cos r}
|
|---|
| 234 | \end{displaymath}
|
|---|
| 235 |
|
|---|
| 236 | with the same approximation as above.
|
|---|
| 237 |
|
|---|
| 238 | \end{enumerate}
|
|---|
| 239 |
|
|---|
| 240 | We note that in case of photon perpendicular to the surface, the
|
|---|
| 241 | following relations hold:
|
|---|
| 242 |
|
|---|
| 243 | \begin{displaymath}
|
|---|
| 244 | \frac{E_{0}'}{E_{0}} = \frac{2n}{n'+n} \qquad
|
|---|
| 245 | \frac{E_{0}''}{E_{0}} = \frac{n'-n}{n'+n}
|
|---|
| 246 | \end{displaymath}
|
|---|
| 247 |
|
|---|
| 248 | where the sign convention for the parallel field has been adopted. This
|
|---|
| 249 | means that if $n'>n$ there is a phase inversion for the reflected wave.
|
|---|
| 250 |
|
|---|
| 251 | Any incoming wave can be separated into one piece polarized parallel to
|
|---|
| 252 | the plane and one polarized perpendicular, and the two components
|
|---|
| 253 | treated accordingly.
|
|---|
| 254 |
|
|---|
| 255 | To maintain the particle description of the photon, the probability to
|
|---|
| 256 | have a refracted or reflected photon must be calculated. The constraint
|
|---|
| 257 | is that the number of photons be conserved, and this can be imposed via
|
|---|
| 258 | the conservation of the energy flux at the boundary, as the number of
|
|---|
| 259 | photons is proportional to the energy. The energy current is given by
|
|---|
| 260 | the expression:
|
|---|
| 261 |
|
|---|
| 262 | \begin{displaymath}
|
|---|
| 263 | \vec{S} = \frac{1}{2}\frac{c}{4\pi}\sqrt{\mu \epsilon}
|
|---|
| 264 | \vec{E} \times \vec{H} = \frac{c}{8\pi}\sqrt{\frac{\epsilon}{\mu}}
|
|---|
| 265 | E_{0}^{2}\hat{k}
|
|---|
| 266 | \end{displaymath}
|
|---|
| 267 |
|
|---|
| 268 | and the energy balance on a unit area of the boundary requires that:
|
|---|
| 269 |
|
|---|
| 270 | \begin{displaymath}
|
|---|
| 271 | \vec{S} \cdot \vec{u} = \vec{S}' \cdot \vec{u} - \vec{S}'' \cdot \vec{u}
|
|---|
| 272 | \end{displaymath}
|
|---|
| 273 | \begin{displaymath}
|
|---|
| 274 | S \cos i = S' cos r + S'' cos i
|
|---|
| 275 | \end{displaymath}
|
|---|
| 276 | \begin{displaymath}
|
|---|
| 277 | \frac{c}{8\pi}\frac{1}{\mu}nE_{0}^{2}\cos i =
|
|---|
| 278 | \frac{c}{8\pi}\frac{1}{\mu '}n'E_{0}'^{2}\cos r +
|
|---|
| 279 | \frac{c}{8\pi}\frac{1}{\mu}nE_{0}''^{2}\cos i
|
|---|
| 280 | \end{displaymath}
|
|---|
| 281 |
|
|---|
| 282 | If we set again $\mu /\mu ' \approx 1$, then the transmission
|
|---|
| 283 | probability for the photon will be:
|
|---|
| 284 |
|
|---|
| 285 | \begin{displaymath}
|
|---|
| 286 | T = (\frac{E_{0}'}{E_{0}})^{2} \frac{n' \cos r}{n \cos i}
|
|---|
| 287 | \end{displaymath}
|
|---|
| 288 |
|
|---|
| 289 | and the corresponding probability to be reflected will be $R=1-T$.
|
|---|
| 290 |
|
|---|
| 291 | In case of reflection, the relation between the incoming photon
|
|---|
| 292 | ($\vec{k},\vec{e}$), the refracted one ($\vec{k}', \vec{e}'$) and the
|
|---|
| 293 | reflected one ($\vec{k}'', \vec{e}''$) is given by the following
|
|---|
| 294 | relations:
|
|---|
| 295 |
|
|---|
| 296 | \begin{displaymath}
|
|---|
| 297 | \vec{q} = \vec{k} \times \vec{u}
|
|---|
| 298 | \end{displaymath}
|
|---|
| 299 | \begin{displaymath}
|
|---|
| 300 | \vec{e}_{\perp} = (\frac{\vec{e} \cdot
|
|---|
| 301 | \vec{q}}{|\vec{q}|}) \frac{\vec{q}}{|\vec{q}|}
|
|---|
| 302 | \end{displaymath}
|
|---|
| 303 | \begin{displaymath}
|
|---|
| 304 | \vec{e}_{\parallel} = \vec{e} - \vec{e}_{\perp}
|
|---|
| 305 | \end{displaymath}
|
|---|
| 306 | \begin{displaymath}
|
|---|
| 307 | e_{\parallel}' = e_{\parallel} \frac{2n \cos i}{n'\cos i + n \cos r}
|
|---|
| 308 | \end{displaymath}
|
|---|
| 309 | \begin{displaymath}
|
|---|
| 310 | e_{\perp|}' = e_{\perp} \frac{2n \cos i}{n \cos i + n' \cos r}
|
|---|
| 311 | \end{displaymath}
|
|---|
| 312 | \begin{displaymath}
|
|---|
| 313 | e_{\parallel}'' = \frac{n'}{n}e_{\parallel}' - e_{\parallel}
|
|---|
| 314 | \end{displaymath}
|
|---|
| 315 | \begin{displaymath}
|
|---|
| 316 | e_{\perp}'' = e_{\perp}' - e_{\perp}
|
|---|
| 317 | \end{displaymath}
|
|---|
| 318 |
|
|---|
| 319 | After transmission or reflection of the photon, the polarization vector
|
|---|
| 320 | is re-normalized to 1. In the case where $\sin r = n \sin i/n' > 1$ then
|
|---|
| 321 | there cannot be a refracted wave, and in this case we have a total
|
|---|
| 322 | internal reflection according to the following formulas:
|
|---|
| 323 | \begin{displaymath}
|
|---|
| 324 | \vec{k}'' = \vec{k} - 2(\vec{k} \cdot \vec{u})\vec{u}
|
|---|
| 325 | \end{displaymath}
|
|---|
| 326 | \begin{displaymath}
|
|---|
| 327 | \vec{e}'' = -\vec{e} + 2(\vec{e} \cdot \vec{u})\vec{u}
|
|---|
| 328 | \end{displaymath}
|
|---|
| 329 |
|
|---|
| 330 | \subsubsection{Case dielectric $\rightarrow$ metal}
|
|---|
| 331 |
|
|---|
| 332 | In this case the photon cannot be transmitted. So the probability for
|
|---|
| 333 | the photon to be absorbed by the metal is estimated according to the
|
|---|
| 334 | table provided by the user. If the photon is not absorbed, it is
|
|---|
| 335 | reflected.
|
|---|
| 336 |
|
|---|
| 337 | \begin{latexonly}
|
|---|
| 338 |
|
|---|
| 339 | \begin{thebibliography}{99}
|
|---|
| 340 | \bibitem{one} J.D.~Jackson, \emph{Classical Electrodynamics},
|
|---|
| 341 | J.~Wiley \& Sons Inc., New York, 1975.
|
|---|
| 342 | \end{thebibliography}
|
|---|
| 343 |
|
|---|
| 344 | \end{latexonly}
|
|---|
| 345 |
|
|---|
| 346 | \begin{htmlonly}
|
|---|
| 347 |
|
|---|
| 348 | \subsection{Bibliography}
|
|---|
| 349 |
|
|---|
| 350 | \begin{enumerate}
|
|---|
| 351 | \item J.D.~Jackson, \emph{Classical Electrodynamics},
|
|---|
| 352 | J.~Wiley \& Sons Inc., New York, 1975.
|
|---|
| 353 | \end{enumerate}
|
|---|
| 354 |
|
|---|
| 355 | \end{htmlonly}
|
|---|
| 356 |
|
|---|