| 1 | \chapter{Physics Processes}
|
|---|
| 2 |
|
|---|
| 3 | \section{Design Philosophy}
|
|---|
| 4 | The processes category contains the implementations of particle transportation
|
|---|
| 5 | and physical interactions. All physics process conform to the basic interface
|
|---|
| 6 | {\it G4VProcess}, but different approaches have been developed for the
|
|---|
| 7 | detailed design of each sub-category.
|
|---|
| 8 |
|
|---|
| 9 | For the decay sub-category, the decays of all long-lived, unstable particles
|
|---|
| 10 | are handled by a single process. This process gets the step length from the
|
|---|
| 11 | mean life of the particle. The generation of decay products requires a
|
|---|
| 12 | knowledge of the branching ratios and/or data distributions stored in the
|
|---|
| 13 | particle class.
|
|---|
| 14 |
|
|---|
| 15 | The electromagnetic sub-category is divided further into the following
|
|---|
| 16 | packages:
|
|---|
| 17 | \begin{itemize}
|
|---|
| 18 | \item {\it standard}: handling basic properties for electron, positron,
|
|---|
| 19 | photon and hadron interactions,
|
|---|
| 20 | \item {\it low energy}: providing alternative models extended down to lower
|
|---|
| 21 | energies than the standard package,
|
|---|
| 22 | \item {\it muons}: handling muon interactions,
|
|---|
| 23 | \item {\it x-rays}: providing specific code for x-ray physics,
|
|---|
| 24 | \item {\it optical}: providing specific code for optical photons,
|
|---|
| 25 | \item {\it utils}: collecting utility classes used by the above packages.
|
|---|
| 26 | \end{itemize}
|
|---|
| 27 | It provides the features of openness and extensibilty resulting from the use
|
|---|
| 28 | of object-oriented technology; alternative physics models, obeying the same
|
|---|
| 29 | process abstract interface, are often available for a given type of
|
|---|
| 30 | interaction.
|
|---|
| 31 |
|
|---|
| 32 | For hadronic physics, an additional set of implementation frameworks was
|
|---|
| 33 | added to accommodate the large number of possible modeling approaches.
|
|---|
| 34 | The top-level framework provides the basic interface to other {\sc Geant4}
|
|---|
| 35 | categories. It satisfies the most general use-case for hadronic shower
|
|---|
| 36 | simulations, namely to provide inclusive cross sections and final state
|
|---|
| 37 | generation. The frameworks are then refined for increasingly specific
|
|---|
| 38 | use-cases, building a hierarchy in which each level implements the
|
|---|
| 39 | interface specified by the level above it. A given hadronic process may
|
|---|
| 40 | be implemented at any one of these levels. For example, the process
|
|---|
| 41 | may be implemented by one of several models, and each of the models may
|
|---|
| 42 | in turn be implemented by several sub-models at the lower framework levels.
|
|---|
| 43 |
|
|---|
| 44 | \section{Class Design}
|
|---|
| 45 |
|
|---|
| 46 | \subsection{General}
|
|---|
| 47 | The object-oriented design of the generic physics process G4VProcess and its
|
|---|
| 48 | relation to the process manager is shown in
|
|---|
| 49 | Fig. \ref{figure:physics-1}. Fig. \ref{figure:physics-2} shows how specific
|
|---|
| 50 | physics processes are related to G4VProcess.
|
|---|
| 51 |
|
|---|
| 52 | \vspace{10pt}
|
|---|
| 53 | \begin{figure}[!ht]
|
|---|
| 54 | \begin{center}
|
|---|
| 55 | \includegraphics[angle=0,scale=0.6]{OOAnalysisDesign/PhysicsProcesses/classDgmProcessMain.eps}
|
|---|
| 56 | \caption{Management of Physics Processes}
|
|---|
| 57 | \label{figure:physics-1}
|
|---|
| 58 | \end{center}
|
|---|
| 59 | \end{figure}
|
|---|
| 60 |
|
|---|
| 61 | \vspace{10pt}
|
|---|
| 62 | \begin{figure}[!ht]
|
|---|
| 63 | \begin{center}
|
|---|
| 64 | \includegraphics[angle=0,scale=0.6]{OOAnalysisDesign/PhysicsProcesses/classDgmProcessProcesses.eps}
|
|---|
| 65 | \caption{General Physics Processes}
|
|---|
| 66 | \label{figure:physics-2}
|
|---|
| 67 | \end{center}
|
|---|
| 68 | \end{figure}
|
|---|
| 69 |
|
|---|
| 70 |
|
|---|
| 71 | % Class diagrams of the low energy electromagnetic processes and the hadronic
|
|---|
| 72 | % models are shown in Fig. (not yet available)
|
|---|
| 73 | % Figs. \ref{figure:emlep-1}
|
|---|
| 74 | % and Fig. \ref{figure:hadp-1},
|
|---|
| 75 | % respectively.
|
|---|
| 76 |
|
|---|
| 77 | % \begin{figure}
|
|---|
| 78 | % \begin{center}
|
|---|
| 79 | % \centerline{\includegraphics[angle=270,scale=0.5]{OOAnalysisDesign/PhysicsProcesses/ElectroMagnetic/classDgmLowEnergyProc.ps}}
|
|---|
| 80 | % \vspace{10pt}
|
|---|
| 81 | % \caption{Low Energy Electromagnetic Processes}
|
|---|
| 82 | % \label{figure:emlep-1}
|
|---|
| 83 | % \end{center}
|
|---|
| 84 | % \end{figure}
|
|---|
| 85 |
|
|---|
| 86 | % \begin{figure}
|
|---|
| 87 | % \begin{center}
|
|---|
| 88 | % \includegraphics[angle=270,scale=0.45]{OOAnalysisDesign/PhysicsProcesses/Hadronic/classDgmHadronicModels.ps}
|
|---|
| 89 | % \caption{Hadronic Processes}
|
|---|
| 90 | % \label{figure:hadp-1}
|
|---|
| 91 | % \end{center}
|
|---|
| 92 | % \end{figure}
|
|---|
| 93 |
|
|---|
| 94 | \section{Status of this chapter}
|
|---|
| 95 |
|
|---|
| 96 | 27.06.05 section on design philosophy added by D.H. Wright \\
|
|---|