source: trunk/documents/UserDoc/UsersGuides/PhysicsReferenceManual/latex/electromagnetic/lowenergy/bremsstrahlung.tex

Last change on this file was 1208, checked in by garnier, 15 years ago

CVS update

File size: 14.9 KB
Line 
1\section{Bremsstrahlung}\label{lowebrems}
2
3 The model G4LivermoreBremsstrahlungModel
4calculates the continuous energy loss due to low energy gamma emission and
5simulates the gamma production by electrons.
6 The gamma production threshold for a given material $\omega_c$ is used to separate the continuous and the
7discrete parts of the process. The energy loss of an electron with the incident energy $T$ are expressed
8via the integrand over energy of the gammas:
9
10\begin{equation}
11{dE\over dx}=\sigma(T){{\int^{\omega_c}_{0.1eV}t{d\sigma\over d\omega}d\omega} \over{\int^{T}_{0.1eV}
12{d\sigma\over d\omega}d\omega}},
13\end{equation}
14
15 where $\sigma(T)$ is the total cross-section at a given incident kinetic energy, $T$, $0.1eV$ is the low energy limit
16of the EEDL data. The production cross-section is a complimentary function:
17
18\begin{equation}
19\sigma=\sigma(T){{\int^{T}_{\omega_c}{d\sigma\over d\omega}d\omega}\over {\int^{T}_{0.1eV}{d\sigma\over d\omega}d\omega}}.
20\end{equation}
21
22 The total cross-section, $\sigma_s$, is obtained from an interpolation of the evaluated cross-section data in the EEDL
23library~\cite{io-EEDL}, according to the formula (\ref{eqloglog}) in Section~\ref{subsubsigmatot}.
24
25 The EEDL data~\cite{br-leg4} of total cross-sections are parametrised~\cite{br-EEDL}  according to (\ref{eqloglog}).
26The probability of the emission of a photon with energy, $\omega$, considering an electron of incident kinetic energy,
27$T$, is generated according to the formula:
28
29\begin{equation}
30\label{eqbrem}
31{d\sigma \over d\omega} = {F(x) \over x}, \;\; \mbox{with} x = {\omega \over T}.
32\end{equation}
33
34 The function, $F(x)$, describing energy spectra of the outcoming photons is taken from the EEDL library. For each
35element 15 points in $x$ from 0.01 to 1 are used for the linear interpolation of this function. The function $F$ is
36normalised by the condition $F(0.01) = 1$. The energy distributions of the emitted photons available in the EEDL
37library are for only a few incident electron energies (about 10 energy points between 10 eV and 100 GeV). For other
38energies a logarithmic interpolation formula (\ref{eqloglog}) is used to obtain values for the function, $F(x)$.
39For high energies, the spectral function is very close to:
40
41\begin{equation}
42  F(x) = 1 - x + 0.75x^2.
43\end{equation}
44
45\subsection{Bremsstrahlung angular distributions}
46
47 The angular distribution of the emitted photons with respect to the incident
48electron can be sampled according to three alternative generators described below.
49The direction of the outcoming electron is determined from the energy-momentum balance.
50This generators are currently implemented in G4ModifiedTsai, G4Generator2BS and
51G4Generator2BN classes.
52
53\subsubsection*{G4ModifiedTsai}
54
55\noindent
56 The angular distribution of the emitted photons is obtained from a
57simplified \cite{br-g3} formula based on the Tsai cross-section \cite{br-tsai},
58which is expected to become isotropic in the low energy limit.
59
60\subsubsection*{G4Generator2BS}
61
62 In G4Generator2BS generator, the angular distribution of the emitted photons is obtained
63from the 2BS Koch and Motz bremsstrahlung double differential cross-section \cite{br-KandM}:
64
65\begin{eqnarray*}
66d\sigma_k,_\theta & = & \frac{4Z^2 r_0^2}{137} \frac{dk}{k} ydy \left\{
67\frac{16y^2E}{(y^2+1)^4E_0}-\right.{} \nonumber \\ 
68& & \left.\frac{(E_0+E)^2}{(y^2+1)^2E_0^2} +
69\left[ \frac{E_0^2+E^2}{(y^2+1)^2E_0^2}- \frac{4y^2E}{(y^2+1)^4E_0}\right]ln M(y)\right\}
70\end{eqnarray*}
71
72\noindent
73where $k$ the photon energy, $\theta$ the emission angle, $E_0$ and $E$ are the
74initial and final electron energy in units of $m_e c^2$, $r_0$ is the classical
75electron radius and $Z$ the atomic number of the material. $y$ and $M(y)$ are
76defined as:
77\begin{eqnarray*}
78y&=&E_0\theta \nonumber \\
79\frac{1}{M(y)}&=&\left(\frac{k}{2E_0E}\right)^2+\left(\frac{Z^{1/3}}{111(y^2+1)}\right)^2
80\end{eqnarray*}
81
82 The adopted sampling algorithm is based on the sampling scheme developed by
83A. F. Bielajew et al. \cite{br-pirs}, and latter implemented in EGS4. In this sampling algorithm
84only the angular part of 2BS is used, with the emitted photon energy, $k$, determined by
85GEANT4 $\left(\frac{d\sigma}{dk}\right)$ differential cross-section.
86
87
88\subsubsection*{G4Generator2BN}
89
90\noindent
91The angular distribution of the emitted photons is obtained from the 2BN Koch and Motz bremsstrahlung
92double differential cross-section \cite{br-KandM} that can be written as:
93
94\begin{eqnarray*}
95d\sigma_k,_\theta & = & \frac{Z^2 r_0^2}{8\pi 137}\frac{dk}{k} \frac{p}{p_0} d\Omega_k
96\left \{ \frac{8\sin^2\theta (2E_0^2-1)}{p_0^2\Delta_0^4}- \right.{} \nonumber \\ 
97& & \left.\frac{2(5E_0^2+2EE_0+3)}{p_0^2\Delta_0^2}
98- \frac{2(p_0^2-k^2)}{Q^2\Delta_0}+\frac{4E}{p_2^2\Delta_0}+\frac{L}{pp_0} \right.{} \nonumber \\ 
99& & \left. \left[ \frac{4E_0\sin^2\theta(3k-p_0^2E)}{p_0^2\Delta^4} + \frac{4E_0^2(E_0^2+E^2)}
100{p_0^2\Delta_0^2}+ \right.\right.{} \nonumber \\ 
101& & \left.\left. \frac{2-2(E_0^2-3EE_0+E^2)}{p_0^2\Delta_0^2}+\frac{2k(E_0^2+EE_0-1)}
102{p_0^2\Delta_0}\right] \right.{} \nonumber \\ 
103& & \left. -\left(\frac{4\epsilon}{p\Delta0}\right) + \left(\frac{\epsilon^Q}{pQ}\right)
104\left[\frac{4}{\Delta^2_0}-\frac{6k}{\Delta_0}-\frac{2k(p_0^2-k^2)}{Q^2\Delta_0}\right]\right \}
105\end{eqnarray*}
106\noindent in which:
107\begin{eqnarray*}
108L&=&\ln\left[\frac{EE_0-1+pp_0}{EE_0-1-pp_0}\right] \nonumber \\
109\Delta_0&=&E_0-p_0\cos\theta                       \nonumber \\
110Q^2&=&p_0^2+k^2-2p_0k\cos\theta                    \nonumber \\
111\epsilon&=&\ln\left[\frac{E+p}{E-p}\right]  \qquad  \epsilon^Q=\ln\left[\frac{Q+p}{Q-p}\right]
112\end{eqnarray*}
113
114\noindent
115where $k$ is the photon energy, $\theta$ the emission angle and $(E_0,p_0)$ and $(E,p)$ are the total
116(energy, momentum) of the electron before and after the radiative emission, all in units of $m_e c^2$.\\
117 Since the 2BN cross--section is a 2-dimensional  non-factorized  distribution an
118acceptance-rejection technique was the adopted. For the 2BN distribution, two functions
119$g_1(k)$ and $g_2(\theta)$ were defined:
120
121\begin{equation}
122g_1(k) = k^{-b} \qquad\qquad g_2(\theta)=\frac{\theta}{1+c\theta^2}
123\end{equation}
124
125\noindent
126such that:
127
128\begin{equation}
129Ag_1(k)g_2(\theta) \ge \frac{d\sigma}{dkd\theta}
130\end{equation}
131
132\noindent
133where A is a global constant to be completed. Both functions have an analytical
134integral $G$ and an analytical inverse $G^{-1}$. The $b$ parameter of $g_1(k)$ was
135empirically tuned and set to $1.2$. For positive $\theta$ values, $g_2(\theta)$ has a maximum 
136at $\frac{1}{\sqrt(c)}$. $c$ parameter controls the function global shape and it was
137used to tune $g_2(\theta)$ according to the electron kinetic energy.\\
138To generate photon energy $k$ according to $g_1$ and $\theta$ according to $g_2$ the
139inverse-transform method was used. The integration of these functions gives
140
141\begin{equation}
142G_1 = C_1 \int_{k_{min}}^{k_{max}} k'^{-b}dk' = C_1 \frac{k^{1-b}-k^{1-b}_{min}}{1-b}
143\end{equation}
144
145\begin{equation}
146G_2 = C_2 \int_{0}^{\theta} \frac{\theta'}{1+c\theta'^2}d\theta'=C_2 \frac{\log(1+c\theta^2)}{2c}
147\end{equation}
148
149\noindent
150where $C_1$ and $C_2$ are two global constants chosen to normalize the integral in the overall range
151to the unit. The  photon momentum $k$ will range from a minimum cut value $k_{min}$ (required to avoid
152infrared divergence) to a maximum value equal to the  electron  kinetic energy  $E_k$, while the polar
153angle ranges from 0 to $\pi$, resulting for $C_1$ and $C_2$:
154
155\begin{equation}
156C_1 = \frac{1-b}{E_k^{1-b}} \qquad\qquad C_2 = \frac{2c}{\log(1+c\pi^2)}
157\end{equation}
158
159\noindent
160$k$ and $\theta$ are then sampled according to:
161
162\begin{equation}
163k = \left[ \frac{1-b}{C_1}\xi_1 + k_{min}^{1-b} \right] \qquad\qquad \theta = \sqrt{\frac{\exp\left(\frac{2c\xi_2}{C_1}\right)}{2c}}
164\end{equation}
165
166\noindent
167where $\xi_1$ and $\xi_2$ are uniformly sampled in the interval (0,1). The event is accepted if:
168
169\begin{equation}
170uAg_1(k)g_2(\theta) \le \frac{d\sigma}{dkd\theta}
171\end{equation}
172
173\noindent
174where $u$ is a random number with uniform distribution in (0,1). The $A$ and $c$ parameters were computed
175in a logarithmic grid, ranging  from 1 keV to 1.5 MeV with 100 points per decade.
176Since the $g_2(\theta)$ function has a maximum at $\theta = \frac{1}{\sqrt{c}}$,
177the $c$ parameter was  computed  using  the  relation $c=\frac{1}{\theta_{max}}$. At the point ($k_{min},\theta_{max}$)
178where $k_{min}$ is the $k$ cut value, the double differential cross-section has its maximum value, since it is
179monotonically decreasing in $k$ and thus the global normalization parameter $A$ is estimated from the relation:
180
181\begin{equation}
182A g_1(k_{min})g_2({\theta_{max}})= \left(\frac{d^2\sigma}{dkd\theta}\right)_{max}
183\end{equation}
184
185\noindent
186where $g_1(k_{min})g_2({\theta_{max}}) =  \frac{k_{min}^{-b}}{2\sqrt{c}}$.
187Since $A$ and $c$ can only be retrieved for a fixed number of electron kinetic energies there exists the possibility that
188$A g_1(k_{min})g_2({\theta_{max}})\le\left(\frac{d^2\sigma}{dkd\theta}\right)_{max}$ for a given $E_k$. This is a small
189violation that can be corrected introducing an additional multiplicative factor to the $A$ parameter, which was
190empirically determined to be 1.04 for the entire energy range.\\ 
191
192\subsubsection*{Comparisons between Tsai, 2BS and 2BN generators}
193
194The currently available generators can be used according to the user required
195precision and timing requirements. Regarding the energy range, validation results
196indicate that for lower energies ($\le$ 100 keV) there is a significant
197deviation on the most probable emission angle between Tsai/2BS generators
198and the 2BN generator - Figure \ref{br-dist}. The 2BN generator maintains however a good agreement
199with Kissel data \cite{Kissel}, derived from the work of Tseng and co-workers \cite{Pratt},
200and it should be used for energies between 1 keV and 100 keV \cite{IEEE}.
201As the electron kinetic energy increases, the different distributions tend to overlap
202and all generators present a good agreement with Kissel data.
203
204\begin{figure}[hbtp]
205\begin{center}
206\setlength{\unitlength}{0.0105in}%
207\includegraphics[width=4.7cm]{electromagnetic/lowenergy/br-10kev.eps}%
208\includegraphics[width=4.7cm]{electromagnetic/lowenergy/br-100kev.eps}%
209\includegraphics[width=4.7cm]{electromagnetic/lowenergy/br-500kev.eps}%
210\end{center}
211\caption{Comparison of polar angle distribution of bremsstrahlung photons ($k/T=0.5$) for
21210 keV ({\em left}) and 100 keV ({\em middle}) and 500 keV ({\em right}) electrons in silver,
213obtained with Tsai, 2BS and 2BN generator}
214\label{br-dist}
215\end{figure}
216
217\noindent
218In figure \ref{br-eff} the sampling efficiency for the different generators are presented.
219The sampling generation efficiency was defined as the ratio between the
220number of generated events and the total number of trials. As energies increases the sampling efficiency
221of the 2BN algorithm decreases from 0.65 at 1 keV electron kinetic energy down to almost 0.35 at 1 MeV.
222For energies up to 10 keV the 2BN sampling efficiency is superior or equivalent to the one of the
2232BS generator. These results are an indication that precision simulation of low energy bremsstrahlung
224can be obtained with little performance degradation. For energies above 500 keV, Tsai generator can be
225used, retaining a good physics accuracy and a sampling efficiency superior to the 2BS generator.
226%
227\begin{figure}[hbtp]
228\begin{center}
229\setlength{\unitlength}{0.0105in}%
230\includegraphics[width=8cm]{electromagnetic/lowenergy/br-eff.eps}
231\end{center}
232\caption{Sampling efficiency for Tsai generator, 2BS and 2BN Koch and Motz generators.}
233\label{br-eff}
234\end{figure} 
235
236\subsection{Status of the document}
237
238\noindent
23930.09.1999 created by Alessandra Forti\\
24007.02.2000 modified by V\'eronique Lef\'ebure\\
24108.03.2000 reviewed by Petteri Nieminen and Maria Grazia Pia\\
24205.12.2001 modified by Vladimir Ivanchenko\\
24313.05.2002 modified by Vladimir Ivanchenko\\
24424.11.2003 modified by Andreia Trindade, Pedro Rodrigues and Luis Peralta\\
245
246\begin{latexonly}
247
248\begin{thebibliography}{99}
249\bibitem{br-leg4}
250  ``Geant4 Low Energy Electromagnetic Models for Electrons and Photons",
251   J.Apostolakis et al., CERN-OPEN-99-034(1999), INFN/AE-99/18(1999)
252\bibitem{br-EEDL} 
253  %http://reddog1.llnl.gov/homepage.red/Electron.htm
254  ``Tables and Graphs of Electron-Interaction Cross-Sections from 10~eV to 100~GeV Derived from
255  the LLNL Evaluated Electron Data Library (EEDL), Z=1-100"
256  S.T.Perkins, D.E.Cullen, S.M.Seltzer,
257  UCRL-50400 Vol.31
258\bibitem{br-g3}
259  ``GEANT, Detector Description and Simulation Tool",
260  CERN Application Software Group, CERN Program Library Long Writeup W5013
261\bibitem{br-tsai}   
262  ``Pair production and bremsstrahlung of charged leptons",
263  Y. Tsai, Rev. Mod. Phys., Vol.46, 815(1974), Vol.49, 421(1977)
264\bibitem{br-KandM}
265   ``Bremsstrahlung Cross-Section Formulas and Related Data",
266  H. W. Koch and J. W. Motz, Rev. Mod. Phys., Vol.31, 920(1959)
267\bibitem{br-pirs} 
268   ``Improved bremsstrahlung photon angular sampling in the EGS4 code system'',
269   A. F. Bielajew, R. Mohan and C.-S. Chui, Report NRCC/PIRS-0203 (1989)
270\bibitem{Kissel} 
271  ``Bremsstrahlung from electron collisions with neutral atoms'',
272   L. Kissel, C. A. Quarls and R. H. Pratt, At. Data  Nucl. Data Tables, Vol. 28, 382(1983)
273\bibitem{Pratt} 
274  ``Electron bremsstrahlung angular distributions in the 1-500 keV energy range'',
275   H. K. Tseng,  R. H. Pratt  and  C. M. Lee , Phys. Rev. A, Vol. 19, 187(1979)
276\bibitem{IEEE}
277   ``GEANT4 Applications and Developments for Medical Physics Experiments'',
278   P. Rodrigues et al. IEEE 2003 NSS/MIC Conference Record
279\end{thebibliography}
280
281\end{latexonly}
282
283\begin{htmlonly}
284
285\subsection{Bibliography}
286
287\begin{enumerate}
288\item
289  ``Geant4 Low Energy Electromagnetic Models for Electrons and Photons",
290   J.Apostolakis et al., CERN-OPEN-99-034(1999), INFN/AE-99/18(1999)
291\item 
292  %http://reddog1.llnl.gov/homepage.red/Electron.htm
293  ``Tables and Graphs of Electron-Interaction Cross-Sections from 10~eV to 100~GeV Derived from
294  the LLNL Evaluated Electron Data Library (EEDL), Z=1-100"
295  S.T.Perkins, D.E.Cullen, S.M.Seltzer,
296  UCRL-50400 Vol.31
297\item
298  ``GEANT, Detector Description and Simulation Tool",
299  CERN Application Software Group, CERN Program Library Long Writeup W5013
300\item   
301  ``Pair production and bremsstrahlung of charged leptons",
302  Y. Tsai, Rev. Mod. Phys., Vol.46, 815(1974), Vol.49, 421(1977)
303\item
304   ``Bremsstrahlung Cross-Section Formulas and Related Data",
305  H. W. Koch and J. W. Motz, Rev. Mod. Phys., Vol.31, 920(1959)
306\item 
307   ``Improved bremsstrahlung photon angular sampling in the EGS4 code system'',
308   A. F. Bielajew, R. Mohan and C.-S. Chui, Report NRCC/PIRS-0203 (1989)
309\item 
310  ``Bremsstrahlung from electron collisions with neutral atoms'',
311   L. Kissel, C. A. Quarls and R. H. Pratt, At. Data  Nucl. Data Tables, Vol. 28, 382(1983)
312\item 
313  ``Electron bremsstrahlung angular distributions in the 1-500 keV energy range'',
314   H. K. Tseng,  R. H. Pratt  and  C. M. Lee , Phys. Rev. A, Vol. 19, 187(1979)
315\item
316   ``GEANT4 Applications and Developments for Medical Physics Experiments'',
317   P. Rodrigues et al. IEEE 2003 NSS/MIC Conference Record
318\end{enumerate}
319
320\end{htmlonly}
321
322
Note: See TracBrowser for help on using the repository browser.