source: trunk/documents/UserDoc/UsersGuides/PhysicsReferenceManual/latex/electromagnetic/lowenergy/compton.tex

Last change on this file was 1208, checked in by garnier, 15 years ago

CVS update

File size: 4.7 KB
Line 
1\section{Compton Scattering}
2
3\subsection{Total Cross Section}
4
5The total cross section for the Compton scattering process
6%(also called incoherent
7%scattering~\footnote{Incoherent scattering is usually described as an interaction
8%between a photon and the outer most, most loosely bound electrons.})
9is determined from the data as described in section \ref{subsubsigmatot}.
10
11\subsection{Sampling of the Final State}
12
13For low energy incident photons, the simulation of the Compton scattering
14process is performed according to the same procedure used for the
15``standard" Compton scattering simulation, with the addition that
16Hubbel's atomic form factor~\cite{ce-hubbel} or scattering function, $SF$,
17is taken into account.  The angular and energy distribution of the
18incoherently scattered photon is then given by the product of the
19Klein-Nishina formula $\Phi(\epsilon)$ and the scattering function,
20$SF(q)$~\cite{ce-reda}
21\begin{equation}
22P(\epsilon, q ) = \Phi( \epsilon ) \times SF(q) .
23\end{equation}
24$\epsilon$ is the ratio of the scattered photon energy $E'$, and the
25incident photon energy $E$.  The momentum transfer is given by
26$q = E \times \sin^2(\theta/2)$, where $\theta$ is the polar angle of the
27scattered photon with respect to the direction of the parent photon.
28$\Phi(\epsilon)$ is given by
29\begin{equation}
30  \Phi(\epsilon) \cong {[{1\over\epsilon} + \epsilon] [1-{\epsilon \over{1+\epsilon^2}} sin^2\theta]} .
31\end{equation}
32
33The effect of the scattering function becomes significant at low energies,
34especially in suppressing forward scattering~\cite{ce-reda}.
35
36The sampling method of the final state is 
37based on composition and rejection Monte Carlo methods \cite{ce-butch,ce-messel,ce-egs4},
38with the $SF$ function included in the rejection function
39\begin{equation}\label{en-samp-comp}
40g(\epsilon) = \left[1-\frac{\epsilon}{1+\epsilon^2} \sin^2\theta \right] \times SF(q) ,
41\end{equation}
42with $0<g(\epsilon)<Z$.
43Values of the scattering functions at each momentum transfer, $q$, are
44obtained by interpolating the evaluated data for the corresponding atomic
45number, $Z$.
46
47The polar angle $\theta$ is deduced from the sampled $\epsilon$ value.
48In the azimuthal direction, the angular distributions of both the scattered
49photon and the recoil electron are considered to be
50isotropic~\cite{ce-stepanek}.
51
52Since the incoherent scattering occurs mainly on the outermost electronic
53subshells, the binding energies can be neglected, as stated in
54reference~\cite{ce-stepanek}.  The momentum vector of the scattered photon,
55$\overrightarrow{P'_{\gamma}}$,
56is transformed into the {\tt World} coordinate system.
57The kinetic energy and momentum of the recoil electron are then
58\begin{eqnarray*}
59T_{el} & = & E - E' \\
60\overrightarrow{P_{el}} & = & 
61              \overrightarrow{P_{\gamma}} - \overrightarrow{P'_{\gamma}} .
62\end{eqnarray*}
63
64
65\subsection{Status of the document}
66
67\noindent
6830.09.1999 created by Alessandra Forti\\
6907.02.2000 modified by V\'eronique Lef\'ebure\\
7008.03.2000 reviewed by Petteri Nieminen and Maria Grazia Pia\\
7126.01.2003 minor re-write by D.H. Wright
72
73\begin{latexonly}
74
75\begin{thebibliography}{99}
76\bibitem{ce-hubbel}
77  ``Summary of Existing Information on the Incoherent Scattering of Photons
78  particularly on the Validity of the Use of the Incoherent Scattering
79  Function",
80  Radiat. Phys. Chem. Vol. 50, No 1, pp 113-124 (1997)
81\bibitem{ce-reda}
82  ``A simple model of photon transport",
83  D.E. Cullen, Nucl. Instr. Meth. in Phys. Res. B 101(1995)499-510
84\bibitem{ce-butch} J.C. Butcher and H. Messel.
85   {\em Nucl. Phys. 20} 15 (1960)   
86\bibitem{ce-messel} H. Messel and D. Crawford.
87   {\em Electron-Photon shower distribution, Pergamon Press} (1970)
88\bibitem{ce-egs4} R. Ford and W. Nelson.
89   {\em SLAC-265, UC-32} (1985)   
90\bibitem{ce-stepanek}
91   ``New Photon, Positron and Electron Interaction Data for Geant in Energy
92Range from 1 eV to 10 TeV",
93   J. Stepanek, Draft to be submitted for publication
94
95\end{thebibliography}
96
97\end{latexonly}
98
99\begin{htmlonly}
100
101\subsection{Bibliography}
102
103\begin{enumerate}
104\item
105  ``Summary of Existing Information on the Incoherent Scattering of Photons
106  particularly on the Validity of the Use of the Incoherent Scattering
107  Function",
108  Radiat. Phys. Chem. Vol. 50, No 1, pp 113-124 (1997)
109\item
110  ``A simple model of photon transport",
111  D.E. Cullen, Nucl. Instr. Meth. in Phys. Res. B 101(1995)499-510
112\item J.C. Butcher and H. Messel.
113   {\em Nucl. Phys. 20} 15 (1960)   
114\item H. Messel and D. Crawford.
115   {\em Electron-Photon shower distribution, Pergamon Press} (1970)
116\item R. Ford and W. Nelson.
117   {\em SLAC-265, UC-32} (1985)   
118\item
119   ``New Photon, Positron and Electron Interaction Data for Geant in Energy
120Range from 1 eV to 10 TeV",
121   J. Stepanek, Draft to be submitted for publication
122
123\end{enumerate}
124
125\end{htmlonly}
Note: See TracBrowser for help on using the repository browser.